精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x3+ax2+b的图象上一点P(1,0),且在P点处的切线与直线3x+y=0平行.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[0,t](0<t<3)上的最大值和最小值;
(3)在(1)的结论下,关于x的方程f(x)=c在区间[1,3]上恰有两个相异的实根,求实数c
的取值范围.

分析 (1)利用导数的几何意义求出a,根据函数过(1,0)点,求出b,即可求出函数f(x)的解析式;
(2)求导数,分类讨论,确定函数的单调性,即可求出函数f(x)在区间[0,t](0<t<3)上的最大值和最小值;
(3)构造函数,研究构造函数的性质尤其是单调性,列出该方程有两个相异的实根的不等式组,求出实数a的取值范围.

解答 解:(1)因为f′(x)=3x2+2ax,曲线在P(1,0)处的切线斜率为f′(1)=3+2a,
即3+2a=-3,
所以a=-3;
又因为函数过(1,0)点,
即-2+b=0,
所以b=2,
所以f(x)=x3-3x2+2
(2)由f(x)=x3-3x2+2,f′(x)=3x2-6x,
令f′(x)=0,可得x=0或x=2,
①当0<t≤2时,在区间(0,t)上f′(x)<0,
可得f(x)在[0,t]上是减函数,
所以f(x)max=f(0)=2,
f(x)min=f(t)=t3-3t2+2;
②当2<t<3时,当x变化时,f′(x)、f(x)的变化情况见下表:

x0(0,2)2(2,t)t
f′(x)0-0++
f(x)2递减-2递增t3-3t2+2
f(x)min=f(2)=-2,
f(x)max为f(0)与f(t)中较大的一个,
f(t)-f(0)=t3-3t2=t2(t-3)<0,
所以f(x)max=f(0)=2,
综上,函数f(x)在区间[0,t](0<t<3)上的最大值是2,最小值是-2.
(3)令g(x)=f(x)-c=x3-3x2+2-c,g′(x)=3x2-6x=3x(x-2).
在x∈上,g′(x)>0.要使g(x)=0在上恰有两个相异的实根,
则$\left\{\begin{array}{l}g(1)≥0\\ g(2)<0\\ g(3)≥0\end{array}\right.$,解得-2<c≤0.

点评 本题考查导数的工具作用,考查学生利用导数研究函数的单调性的知识.考查学生对方程、函数、不等式的综合问题的转化与化归思想,将方程的根的问题转化为函数的图象交点问题,属于综合题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n-1}的前n项和(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.《数学选修1-2》的知识结构图如图所示,则“直接证明与间接证明”的“上位”要素是(  )
A.推理与证明B.统计案例
C.数系的扩充与复数的引入D.框图

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某公司的组织结构图如图所示,其中技术服务部的直接领导是(  )
A.董事长B.监事会C.总经理D.总工程师

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(Ⅰ)若a,b,c∈R,证明函数f(x)=ax3+bx2+cx-b必有局部对称点;
(Ⅱ)是否存在常数m,使得定义在区间[-1,1]上的函数f(x)=2x+m有局部对称点?若存在,求出m的范围,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}({4a-3})x+2a-4,x≤t\\ 2{x^3}-6x,x>t\end{array}\right.$,无论t取何值,函数f(x)在R上总是不单调,则实数a的取值范围是(  )
A.(-∞,1)B.$[{\frac{1}{4},+∞})$C.$[{\frac{3}{4},+∞})$D.$({-∞,\frac{3}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱柱ABC-A1B1C1中,$AB=BC=\sqrt{5},AC=2$且点A1在底面ABC上的射影O恰是线段AC的中点,$A{A_1}=\sqrt{5}$.
(1)判断A1B与B1C是否垂直,并证明你的结论;
(2)求点A1到平面BCC1B1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下面给出四种说法:
①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
②命题P:“?x0∈R,x02-x0-1>0”的否定是¬P:“?x∈R,x2-x-1≤0”;
③设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(-1<X<0)=$\frac{1}{2}$-p
④回归直线一定过样本点的中心($\overline{x}$,$\overline{y}$).
其中正确的说法有②③④(请将你认为正确的说法的序号全部填写在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.
(I)求证:EM⊥AD;
(II)求证:MN∥平面ADE;
(III)求点A到平面BCE的距离.

查看答案和解析>>

同步练习册答案