精英家教网 > 高中数学 > 题目详情
12.在△ABC中,若b=8,c=3,A=60°,则此三角形外接圆的半径为(  )
A.$\frac{{8\sqrt{2}}}{3}$B.$\frac{14}{3}\sqrt{3}$C.$\frac{7}{3}$D.$\frac{{7\sqrt{3}}}{3}$

分析 利用余弦定理列出关系式,把b,c,cosA的值代入求出a的值,再利用正弦定理即可求出三角形外接圆半径.

解答 解:∵在△ABC中,b=8,c=3,A=60°,
∴由余弦定理得:a2=b2+c2-2bccosA=64+9-24=49,即a=7,
由正弦定理得:$\frac{a}{sinA}$=2R,即R=$\frac{a}{2sinA}$=$\frac{7}{2×\frac{\sqrt{3}}{2}}$=$\frac{7\sqrt{3}}{3}$.
故选:D.

点评 此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,五面体ABCDE中,AB∥CD,CB⊥平面ABE,AE⊥AB,AB=AE=2,BC=$\sqrt{2}$,CD=1.
(1)求证:直线BD⊥AE;
(2)求证:直线BD⊥平面ACE;
(3)求DE与平面ABE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列命题:①x=2是x2-4x+4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件;③sin α=sin β是α=β的充要条件;④ab≠0是a≠0的充分不必要条件.其中为真命题的是②④.(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数),M是曲线C1上的动点,点P满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$
(1)求点P的轨迹方程C2
(2)以O为极点,x轴正半轴为极轴的极坐标系中,射线$θ=\frac{π}{6}$与曲线C1、C2交于不同于极点的A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在四边形ABCD中,D=2B,且$AD=2,CD=6,cosB=\frac{{\sqrt{3}}}{3}$.
(1)求△ACD的面积;          
(2)若$BC=4\sqrt{3}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在矩形ABCD中,BC=2AB,PA⊥平面ABCD,E为BC的中点.
(Ⅰ)求证:DE⊥平面PAE;
(Ⅱ)若PA=AB=2,F为PE的中点,求三棱锥A-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若关于x的不等式|a-1|≥|2x+1|+|2x-3|的解集非空,则实数a的取值范围为(  )
A.(-∞,-3]∪[5,+∞)B.(-∞,-3)∪(5,+∞)C.[-3,5]D.(-3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin2x-cos2x-2$\sqrt{3}$sinx cosx(x∈R).
(Ⅰ)求f($\frac{2π}{3}$)的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.

查看答案和解析>>

同步练习册答案