分析 (Ⅰ)在矩形ABCD中,由题意可得△ABE,△CDE均为等腰直角三角形,得到AE⊥DE.再由PA⊥平面ABCD,可得PA⊥DE.然后利用线面垂直的判定可得DE⊥平面PAE;
(Ⅱ)直接利用等积法求三棱锥A-DEF的体积.
解答 (Ⅰ)证明:在矩形ABCD中,∵BC=2AB,E为BC的中点.![]()
∴$BE=CE=\frac{1}{2}BC=AB=CD$,
∴△ABE,△CDE均为等腰直角三角形,
∴$∠AEB=∠DEC=\frac{π}{4}$,得AE⊥DE.
∵PA⊥平面ABCD,∴PA⊥DE.
又AE∩PA=A,∴DE⊥平面PAE;
(Ⅱ)解:∵AB=2,∴${S_{△ADE}}=\frac{1}{2}×2×4=4$.
∵F为PE的中点,∴${V_{A-DEF}}={V_{F-ADE}}=\frac{1}{2}{V_{P-ADE}}=\frac{1}{2}×\frac{1}{3}×4×2=\frac{4}{3}$.
点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{3},+∞})$ | B. | (0,12] | C. | [0,12] | D. | $({-∞,\frac{1}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{8\sqrt{2}}}{3}$ | B. | $\frac{14}{3}\sqrt{3}$ | C. | $\frac{7}{3}$ | D. | $\frac{{7\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4立方丈 | B. | 5立方丈 | C. | 6立方丈 | D. | 12立方丈 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com