【题目】已知
是定义在R上的奇函数,当
时,
.
(1)求
的值;
(2)求
的解析式;
(3)解关于
的不等式
,结果用集合或区间表示.
【答案】(1)0
(2)![]()
(3)当a>1时,不等式的解集为(1-loga2,1+loga5);当0<a<1时,不等式的解集为R.
【解析】
试题分析:解 (1)∵f(x)是奇函数,∴f(-2)=-f(2),即f(2)+f(-2)=0.
(2)当x<0时,-x>0,∴f(-x)=a-x-1.
∵f(x)是奇函数,有f(-x)=-f(x),∴f(x)=-a-x+1(x<0).
∴所求的解析式为
.
(3)不等式等价于
或
,
即
或
.
当a>1时,有
或
,注意此时loga2>0,loga5>0,
可得此时不等式的解集为(1-loga2,1+loga5).
同理可得,当0<a<1时,不等式的解集为R.
综上所述,当a>1时,不等式的解集为(1-loga2,1+loga5);当0<a<1时,不等式的解集为R.
科目:高中数学 来源: 题型:
【题目】已知椭圆
+y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足
=
.
(1)求证:
+
=
;
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
给出下列四个命题:
①c = 0时,
是奇函数; ②
时,方程
只有一个实根;
③
的图象关于点(0 , c)对称; ④方程
至多3个实根.
其中正确的命题个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在海岸A处,发现南偏东45°方向距A为(2
-2)海里的B处有一艘走私船,在A处正北方向,距A为
海里的C处的缉私船立即奉命以10
海里/时的速度追截走私船.
(1)刚发现走私船时,求两船的距离;
(2)若走私船正以10
海里/时的速度从B处向南偏东75°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(精确到分钟,参考数据:
≈1.4,
≈2.5).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ex(ax2﹣x﹣1)(a∈R).
(1)若函数f(x)在R上单调递减,求a的取值范围
(2)当a>0时,求f(|sinx|)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱
中,
平面
,
,
,
为
的中点.
![]()
(1)求四棱锥
的体积;
(2)求证:
;
(3)判断线段
上是否存在一点
(与点
不重合),使得
四点共面? (结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,角A,B,C的对边分别为a,b,c,R表示
的外接圆半径.
(Ⅰ)如图,在以O圆心、半径为2的
O中,BC和BA是
O的弦,其中
,求弦AB的长;
(Ⅱ)在
中,若
是钝角,求证:
;
(Ⅲ)给定三个正实数a、b、R,其中
,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的
不存在、存在一个或存在两个(全等的三角形算作同一个)?在
存在的情况下,用a、b、R表示c.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足
.
(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)-f(
)<2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com