【题目】已知函数
.
(1)讨论
在
上的单调性;
(2)令
,当
时,证明:对
,使
.
【答案】(1)见解析;(2)见证明
【解析】
(1)由题意可得
,分类讨论
时,
和
三种情况确定函数的单调性即可;
(2)此时原题目等价于
.由函数f(x)的解析式可得
,结合函数g(x)的性质证明
即可证得题中的结论.
(1)![]()
当
时,由于
,所以
恒成立,
在
为增函数;
当
时,①若
恒成立,
在上
为减函数;
②若
,令
,得
在
上为增函数,
上为减函数.
综上:当
时,
在
上为增函数;
当
时,
在上
为增函数,在
上为减函数;
当
时,
在上
为减函数.
(2)此时原题目等价于
.
当
时,
,由(1)知
在
上为增函数,在
上为减函数,
,
令
.令
,得
,
在
上恒成立,
在
上单调递增,即
在上
单调递增.
当
时,
,
由于
存在
,使
,即
,
在
单调递减,在
单调递增,
,
令
恒成立,
在
上为减函数
,从而
命题得证.
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入
万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 | 1 | 2 | 3 | 4 | 5 |
销售收益 | 2 | 3 | 2 | 7 |
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点为
,
是椭圆上半部分的动点,连接
和长轴的左右两个端点所得两直线交
正半轴于
两点(点
在
的上方或重合).
![]()
(1)当
面积
最大时,求椭圆的方程;
(2)当
时,在
轴上是否存在点
使得
为定值,若存在,求
点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(多选题)下列说法正确的是( )
A.椭圆
1上任意一点(非左右顶点)与左右顶点连线的斜率乘积为![]()
B.过双曲线
1焦点的弦中最短弦长为![]()
C.抛物线y2=2px上两点A(x1,y1).B(x2,y2),则弦AB经过抛物线焦点的充要条件为x1x2![]()
D.若直线与圆锥曲线有一个公共点,则该直线和圆锥曲线相切
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的
倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
![]()
则下列结论正确的是
![]()
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了
倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为调研学生在
,
两家餐厅用餐的满意度,从在
,
两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以10为组距分成6组:
,
,
,
,
,
,得到
餐厅分数的频率分布直方图,和
餐厅分数的频数分布表:
![]()
定义学生对餐厅评价的“满意度指数”如下:
分数 |
|
|
|
满意度指数 |
|
|
|
(Ⅰ)在抽样的100人中,求对
餐厅评价“满意度指数”为0的人数;
(Ⅱ)从该校在,
两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对
餐厅评价的“满意度指数”比对
餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从
,
两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C:
(a>0,b>0)的离心率为
,且![]()
(1)求双曲线C的方程;
(2)已知直线
与双曲线C交于不同的两点A,B且线段AB的中点在圆
上,求m的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组
,第二组
,
,第五组
.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.
![]()
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设m,n表示该班某两位同学的百米测试成绩,且已知
求事件“
”发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com