分析 (1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
(2)猜想:(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
(3)结论依然成立.
解答 (1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=$\frac{1}{2}$FD,
同理,在Rt△DEF中,EG=$\frac{1}{2}$FG,∴CG=EG;----------------------------------------------(3分)
(2)猜想:(1)中结论仍然成立,即EG=CG;
连接AG,过G点作GK⊥AD于K,在△DAG和△DCG中,
$\left\{\begin{array}{l}{AD=CD}\\{∠ADG=∠CDG}\\{DG=DG}\end{array}\right.$,
∴△DAG≌△DCG(SAS),
∴AG=CG,G为DF中点.易证K为AE中点,∴AG=EG,
∴CG=EG------------------(7分)
(3)(1)中的结论仍然成立,即EG=CG,其他的结论还有:EG⊥CG.----------------------(11分)
点评 本题考查了正方形的性质的运用,矩形的判定就性质的运用,旋转的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
科目:高中数学 来源: 题型:选择题
| A. | 0<b<a<1 | B. | 0<a<b<1 | C. | a>b>1 | D. | 0<a<1<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 432 | B. | 288 | C. | 216 | D. | 144 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,3) | B. | [2,3) | C. | (2,3) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com