分析 由已知得$\frac{{a}_{11}+{a}_{10}}{{a}_{10}}$<0,从而a10>0,a11<0,由此能求出使得Sn>0的n的最大值.
解答 解:∵数列{an}为等差数列,公差为d,$\frac{{a}_{11}}{{a}_{10}}$<-1,
∴$\frac{{a}_{11}+{a}_{10}}{{a}_{10}}$<0,由它们的前n项和Sn有最大可得数列的公差d<0,
∴a10>0,a11+a10<0,a11<0,
∴a1+a19=2a10>0,a1+a20=a11+a10<0.
使得Sn>0的n的最大值n=19,
故答案为:19.
点评 本题考查使Sn<0的n的最小值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com