分析 根据图形得$\overrightarrow{MG}$=$\overrightarrow{AG}$-$\overrightarrow{AM}$=($\frac{1}{4}$-x)$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$,$\overrightarrow{GN}$=$\overrightarrow{AN}$-$\overrightarrow{AG}$=y$\overrightarrow{AC}$-$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=-$\frac{1}{4}$$\overrightarrow{AB}$+(y-$\frac{1}{4}$)$\overrightarrow{AC}$,利用共线向量的条件得出($\frac{1}{4}$-x)(y-$\frac{1}{4}$)+$\frac{1}{16}$=0,化简即可得出$\frac{1}{x}$+$\frac{1}{y}$的值即可.
解答 解:根据题意得出,
△ABC中,D为BC的中点,G为AD的中点,
过点G任作一直线MN,分别交AB,AC于M,N两点,
若$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,
∴$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AD}$=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
∴$\overrightarrow{MG}$=$\overrightarrow{AG}$-$\overrightarrow{AM}$=($\frac{1}{4}$-x)$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$,
$\overrightarrow{GN}$=$\overrightarrow{AN}$-$\overrightarrow{AG}$=y$\overrightarrow{AC}$-$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=-$\frac{1}{4}$$\overrightarrow{AB}$+(y-$\frac{1}{4}$)$\overrightarrow{AC}$,
∵$\overrightarrow{MG}$∥$\overrightarrow{GN}$,
∴($\frac{1}{4}$-x)(y-$\frac{1}{4}$)+$\frac{1}{16}$=0,
即$\frac{1}{4}$(x+y)-xy=0,
∴$\frac{1}{x}$+$\frac{1}{y}$=4,
故答案为:4.
点评 本题考查的知识点是向量的线性运算性质及几何意义,向量的共线定理,及三角形的重心,其中根据$\overrightarrow{MG}$与$\overrightarrow{NG}$共线,根据共线向量基本定理,进而得到x,y的关系式,是解答本题的关键.
科目:高中数学 来源: 题型:解答题
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ρcosθ+ρsinθ=2 | B. | ρcosθ-ρsinθ=2 | C. | ρcosθ+ρsinθ=$\sqrt{2}$ | D. | ρcosθ-ρsinθ=$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com