精英家教网 > 高中数学 > 题目详情
14.如图,在直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=DC=$\frac{1}{2}$AB=1.直角梯形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面ABEF⊥平面ABCD.
(Ⅰ)求证:FA⊥BC;
(Ⅱ)求直线BD和平面BCE所成角的正弦值;
(Ⅲ)设H为BD的中点,M,N分别为线段FD,AD上的点(都不与点D重合).若直线FD⊥平面MNH,求MH的长.

分析 (Ⅰ)利用平面与平面垂直的性质证明:FA⊥平面ABCD,即可证明FA⊥BC;
(Ⅱ)以A为原点建立空间直角坐标系,求出平面BCE的一个法向量,利用向量的夹角公式,即可求直线BD和平面BCE所成角的正弦值;
(Ⅲ)设$\frac{DM}{DF}$=k(0<k≤1),则M(1-k,0,k),利用FD⊥平面MNH,求出M的坐标,即可求MH的长.

解答 (Ⅰ)证明:由已知得∠FAB=90°,所以FA⊥AB.
因为平面ABEF⊥平面ABCD,
且平面ABEF∩平面ABCD=AB,
所以FA⊥平面ABCD,
由于BC?平面ABCD,所以FA⊥BC.
(Ⅱ)解:由(Ⅰ)知FA⊥平面ABCD,所以FA⊥AB,FA⊥AD.
由已知DA⊥AB,所以AD,AB,AF两两垂直.
以A为原点建立空间直角坐标系(如图).

因为AD=DC=$\frac{1}{2}$AB=1,
则B(0,2,0),C(1,1,0),D(1,0,0),E(0,1,1),
所以$\overrightarrow{BC}$=(1,-1,0),$\overrightarrow{BE}$=(0,-1,1),
设平面BCE的一个法向量$\overrightarrow{n}$=(x,y,z).
所以$\left\{\begin{array}{l}{x-y=0}\\{-y+z=0}\end{array}\right.$.
令x=1,则$\overrightarrow{n}$=(1,1,1).
设直线BD与平面BCE所成角为θ,
因为$\overrightarrow{BD}$=(1,-2,0),
所以sinθ=|$\frac{1-2}{\sqrt{3}•\sqrt{5}}$|=$\frac{\sqrt{15}}{15}$.
所以直线BD和平面BCE所成角的正弦值为$\frac{\sqrt{15}}{15}$.
(Ⅲ)解:A(0,0,0),D(1,0,0),F(0,0,1),B(0,2,0),H($\frac{1}{2}$,1,0).
设$\frac{DM}{DF}$=k(0<k≤1),则M(1-k,0,k),
∴$\overrightarrow{MH}$=(k-$\frac{1}{2}$,1,-k),$\overrightarrow{FD}$=(1,0,-1).
若FD⊥平面MNH,则FD⊥MH.
即$\overrightarrow{FD}•\overrightarrow{MH}$=0.
∴k-$\frac{1}{2}$+k=0.解得k=$\frac{1}{4}$.
则$\overrightarrow{MH}$=($\frac{1}{4}$,1,-$\frac{1}{4}$),|$\overrightarrow{MH}$|=$\frac{3}{4}\sqrt{2}$.

点评 本题考查线面垂直的判定、平面与平面垂直的性质,考查线面角,正确运用向量法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知直四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,AB=2,CC1=2$\sqrt{2}$,E为CC1的中点,则点A到平面BED的距离为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知直三棱锥ABC-A1B1C1中,AC=BC=2,且AC⊥BC,点D是A1B1中点.
(1)求证:平面CC1D⊥平面A1ABB1
(2)若异面直线CD与BB1所成角的正切值为$\frac{\sqrt{2}}{2}$,求点C1到平面A1CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直三棱柱ABC-A1B1C1中,底面边长和侧棱长都等于2,D是BC的中点,则三棱锥A-B1DC1的体积为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{lnx+1}{{e}^{x}}$(e=2.71828…是自然对数的底数),函数h(x)=1-x-x•lnx.
(1)求函数y=h(x)的单调区间;
(2)若函数g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算下列各数:
(1)${A}_{5}^{2}$
(2)${A}_{6}^{6}$
(3)$\frac{{2A}_{8}^{5}+{7A}_{8}^{4}}{{A}_{8}^{8}{-A}_{9}^{5}}$
(4)$\frac{(2n)!}{{A}_{n}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若|$\overrightarrow{a}$|=3|$\overrightarrow{b}$|=4,($\overrightarrow{a}+\overrightarrow{b}$)•($\overrightarrow{a}+3\overrightarrow{b}$)=81,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知球面上有三点A、B、C,其中OA、OB、OC两两互相垂直(O为球心),且过A、B、C三点的截面圆的面积为4π,则球O的体积为4$\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD的底面ABCD为菱形,PA⊥平面ABCD,PA=AB=2,分别为CD、PB的中点,AE=$\sqrt{3}$.
(1)求证:平面AEF⊥平面PAB;
(2)求平面PAB与平面PCD所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案