精英家教网 > 高中数学 > 题目详情
2.直三棱柱ABC-A1B1C1中,底面边长和侧棱长都等于2,D是BC的中点,则三棱锥A-B1DC1的体积为$\frac{2\sqrt{3}}{3}$.

分析 画出图象,利用已知条件求出棱锥的底面积以及高,即可求解三棱锥A-B1DC1的体积.

解答 解:由题意几何体的图形如图:所求三棱锥的体积,就是底面积为一个侧面面积的一半,棱锥的高为AD,
底面面积为:$\frac{1}{2}×2×2$=2,
高:$\sqrt{3}$,
三角锥的体积为:$\frac{1}{3}×2×\sqrt{3}$=$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.

点评 本题考查三棱柱与三棱锥的关系,棱锥的体积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD的底面ABCD是平行四边形,PA⊥底面ABCD,∠PCD=90°,PA=AB=AC.
(I)求证:AC⊥CD;
(Ⅱ)点E在棱PC上,满足∠DAE=60°,求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正三棱柱ABC-A1B1C1中(底面为正三角形且侧棱垂直于底面的三棱柱叫正三棱柱),各棱长都是4,D是BC的中点.
(1)求证:A1C∥平面AB1D;
(2)求二面角D-AB1-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB⊥平面BCD,AB=BC=CD=1,AD与平面BCD成45°的角,
(1)求直线AD与平面ABC所成的角的大小(用反三角表示);
(2)求D点到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知两个定点A1(-2,0),A2(2,0),动点M满足直线MA1与MA2的斜率之积是定值$\frac{m}{4}$(m≠0).
(1)求动点M的轨迹方程,并指出随m变化时方程所表示的曲线C的形状;
(2)若m=-1,设直线l与(1)中轨迹C相交于E、F两点,直线OE,l,OF的斜率分别为k1,k,k2(其中k>0).△OEF的面积为S,以OE、OF为直径的圆的面积分别为S1,S2.若k1,k,k2恰好构成等比数列,求$\frac{{S}_{1}+{S}_{2}}{S}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某几何体的三视图如图所示,则该几何体外接球表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=DC=$\frac{1}{2}$AB=1.直角梯形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面ABEF⊥平面ABCD.
(Ⅰ)求证:FA⊥BC;
(Ⅱ)求直线BD和平面BCE所成角的正弦值;
(Ⅲ)设H为BD的中点,M,N分别为线段FD,AD上的点(都不与点D重合).若直线FD⊥平面MNH,求MH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{(sinx+cosx)^{2}-1}{co{s}^{2}x-si{n}^{2}x}$,方程f(x)=$\sqrt{3}$在(0,+∞)上的解按从小到达的顺序排成数列{an}(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{3{a}_{n}}{(4{n}^{2}-1)(3n-2)}$,数列{bn}的前n项和为Sn,求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设正数P1、P2,…,P2n满足P1+P2+P3+…P2n=1,求证:P1lnp1+P2lnp2+…+P${\;}_{{2}^{n}}$lnp2n≥-n.

查看答案和解析>>

同步练习册答案