精英家教网 > 高中数学 > 题目详情
7.f(x)为偶函数,当x>0时,f(x)=2x-1,则当x<0时,f(x)=(  )
A.2x-1B.-2x+1C.2x+1D.-2x-1

分析 先根据f(x)为偶函数得到f(-x)=f(x),从而可设x<0,进而-x>0,根据条件即可求出f(-x)=-2x-1=f(x),这样即求出了x<0时,f(x)的解析式.

解答 解:f(x)为偶函数,则f(-x)=f(x);
设x<0,-x>0,则:
f(-x)=2(-x)-1=f(x);
∴x<0时,f(x)=-2x-1.
故选D.

点评 考查偶函数的定义,偶函数,已知x>0时,求x<0时f(x)解析式的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=log5x+2(x≥1)的值域是(  )
A.RB.[2,+∞)C.[3,+∞]D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了解某市居民日常用水量的标准,某机构通过抽样获得了100位居民某年的月均用水量(单位:吨),如表是这100位居民月均用水量的频率分布表,根据如表解答下列问题:
(1)求如表中a和b的值;
(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的中位数(精确到0.01).
分组频数频率
[0,1)10b
[1,2)200.20
[2,3)a0.30
[3,4)200.20
[4,5)100.10
[5,6]100.10
合计1001.00

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B={x|-1<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:“x∈R时,都有x2-x+$\frac{1}{4}$<0”;命题q:“存在x∈R,使sinx+cosx=$\sqrt{2}$成立”.则下列判断正确的是(  )
A.p∨q为假命题B.p∧q为真命题C.¬p∧q为真命题D.¬p∨¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知关于x的不等式ax2-3x+2>0.
(1)若不等式的解集为全体实数集R,求实数a的取值范围;
(2)若不等式的解集为{x|x<1或x>b},
①求a,b的值;
②解关于x的不等式ax2-(ac+b)x+bc<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校高一年级某班开展数学活动,小李和小军合作用一副三角板测量学校的旗杆,小李站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小李和小军相距(BD)6米,小李的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x2-ax-1在区间(-$\frac{1}{2}$,$\frac{1}{2}$)上有零点,则实数a的取值范围是(  )
A.($\frac{3}{2}$,+∞)B.(-∞,-$\frac{3}{2}$)C.(-∞,-$\frac{3}{2}$)∪($\frac{3}{2}$,+∞)D.(-$\frac{3}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ABC=90°,AB=$\sqrt{3}$,BC=1,AA1=3,BD⊥AC,M为线段CC1上一点.
(Ⅰ)求CM的值,使得AM⊥平面A1BD;
(Ⅱ)在(Ⅰ)的条件下,求二面角B-AM-C的正切值.

查看答案和解析>>

同步练习册答案