精英家教网 > 高中数学 > 题目详情

已知函数,其中常数 .
(1)当时,求函数的极大值;
(2)试讨论在区间上的单调性;
(3)当时,曲线上总存在相异两点,
,使得曲线在点处的切线互相平行,求的取值范围.

(Ⅰ)(2)当时,上单调递减,在上单调递增. 当时,上单调递减,当时,上单调递减,在上单调递增(3)

解析试题分析:(1) 当时,
,当时, ;当时, ,
上单调递减,在上单调递增,故极大值=

(2)
时,上单调递减,在上单调递增.
时,上单调递减
时,上单调递减,在上单调递增.
(3)由题意,可得()

恒成立
上单调递增,
,从而的取值范围是
考点:利用导数求函数最值,单调区间及导数的几何意义
点评:解本题的注意事项:求单调区间时需分情况讨论,在解决恒成立问题时常转化为求函数最值问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分13分)
已知函数,设曲线y=在与x轴交点处的切线为y=4x-12,的导函数,且满足
(1)求
(2)设,求函数g(x)在[0,m]上的最大值。
(3)设,若对一切,不等式恒成立,求实数t的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
函数,过曲线上的点的切线方程为
(Ⅰ)若时有极值,求的表达式;
(Ⅱ)若函数在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1)若,
①求的值;
的最小值。
(参考数据
(2) 当上是单调函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知在x=2时有极大值6,在x=1时有极小值.
⑴ 求的值;
⑵ 求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设为奇函数,a为常数。
(1)求a的值;
(2)证明在区间上为增函数;
(3)若对于区间上的每一个的值,不等式恒成立,求实数m  的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)如果函数的单调递减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图像过点的切线方程;
(3)对一切的,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线过点,且在点处的切线斜率为2.
(Ⅰ)求的值;
(Ⅱ)求的极值点;
(Ⅲ)对定义域内任意一个,不等式是否恒成立,若成立,请证明;若不成立,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数).
①当时,求曲线在点处的切线方程;
②设的两个极值点,的一个零点.证明:存在实数,使得按某种顺序排列后构成等差数列,并求.

查看答案和解析>>

同步练习册答案