精英家教网 > 高中数学 > 题目详情
17.过椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的右焦点F作两条相互垂直的直线分别交椭圆于A,B,C,D四点,则$\frac{1}{|AB|}+\frac{1}{|CD|}$的值为(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.1D.$\frac{7}{12}$

分析 当直线AB的斜率不存在时,AB:x=1,推导出$\frac{1}{|AB|}+\frac{1}{|CD|}$=$\frac{7}{12}$;当直线AB的斜率存在时,设AB:y=k(x-1)(k≠0),CD:y=-$\frac{1}{k}$(x-1).分别利用弦长公式求出|AB|、|CD|的长度,由此能推导出$\frac{1}{|AB|}+\frac{1}{|CD|}$=$\frac{7}{12}$为定值.

解答 解:由椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$,得椭圆的右焦点为F(1,0),
当直线AB的斜率不存在时,AB:x=1,
则CD:y=0.此时|AB|=3,|CD|=4,
则$\frac{1}{|AB|}+\frac{1}{|CD|}$=$\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$;
当直线AB的斜率存在时,
设AB:y=k(x-1)(k≠0),则 CD:y=-$\frac{1}{k}$(x-1).
又设点A(x1,y1),B(x2,y2).
联立方程组$\left\{\begin{array}{l}{y=k(x-1)}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,
消去y并化简得(4k2+3)x2-8k2x+4k2-12=0,
∴${x}_{1}+{x}_{2}=\frac{8{k}^{2}}{3+4{k}^{2}},{x}_{1}{x}_{2}=\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
∴|AB|=$\sqrt{1+{k}^{2}}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}•\sqrt{(\frac{8{k}^{2}}{3+4{k}^{2}})^{2}-4•\frac{4{k}^{2}-12}{3+4{k}^{2}}}$=$\frac{12({k}^{2}+1)}{3+4{k}^{2}}$,
由题知,直线CD的斜率为-$\frac{1}{k}$,
同理可得|CD|=$\frac{12({k}^{2}+1)}{4+3{k}^{2}}$.
∴$\frac{1}{|AB|}+\frac{1}{|CD|}$=$\frac{7({k}^{2}+1)}{12({k}^{2}+1)}=\frac{7}{12}$为定值.
故选:D.

点评 本题考查定值的证明,考查弦长公式的运用,体现了分类讨论的数学思想方法,考查计算能力,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.点集{(x,y)|||x|-1|+|y|=2}的图形是一条封闭的折线,这条封闭折线所围成的区域的面积是14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a=log3π,b=log2$\sqrt{3}$,c=log3$\sqrt{2}$,则a、b、c的大小关系是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是等差数列且公差d>0,n∈N*,a1=2,a3为a1和a9的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{2}{{n({{a_n}+2})}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知2cos(π-x)+3cos($\frac{π}{2}$-x)=0,则tan2x=$\frac{12}{5}$,sin2x=$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知各项均为正数的等比数列{an}中,3a1,$\frac{1}{2}$a3,2a2,成等差数列,则$\frac{{a}_{2014}+{a}_{2015}}{{a}_{2011}+{a}_{2012}}$=(  )
A.-1或3B.3C.27D.-1或27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心C在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为(  )
A.[0,$\frac{12}{5}$]B.(0,$\frac{12}{5}$)C.(1,3)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z满足(1-2i)z=3+4i,则z=(  )
A.1-2iB.-1+2iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n和Sn=$\frac{3}{2}$n2+$\frac{5}{2}$n,数列{bn}的通项公式bn=5n+2.
(1)求数列{an}的通项公式;
(2)设cn=$\frac{1}{{a}_{n}{b}_{n}}$,求证:$\sum_{i=1}^{n}$ci<$\frac{2}{25}$.

查看答案和解析>>

同步练习册答案