精英家教网 > 高中数学 > 题目详情
5.已知数列{an}是等差数列且公差d>0,n∈N*,a1=2,a3为a1和a9的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{2}{{n({{a_n}+2})}}$,求数列{bn}的前n项和Sn

分析 (1)利用等差数列与等比数列的通项公式即可得出;
(2)利用“裂项求和”即可得出.

解答 解:(Ⅰ)∵a1=2,a3为a1和a9的等比中项,
∴${a_3}^2={a_1}{a_9}$,即(2+2d)2=2(2+8d),
化简得 d2=2d,
∵d>0,解得d=2,
∴an=2+2(n-1)=2n;
(Ⅱ)${b_n}=\frac{2}{{n({{a_n}+2})}}$=$\frac{2}{{n({2n+2})}}$=$\frac{1}{{n({n+1})}}$=$\frac{1}{n}-\frac{1}{n+1}$,
Sn=b1+b2+…+bn=$({1-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n}-\frac{1}{n+1}})$
=$\frac{n}{n+1}$.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如果$\overrightarrow{a}$、$\overrightarrow{b}$是单位向量,其夹角为$\frac{π}{2}$,且$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=k$\overrightarrow{a}$-4$\overrightarrow{b}$,$\overrightarrow{c}$⊥$\overrightarrow{d}$,则k=(  )
A.6B.-6C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则(  )
A.$\overrightarrow{a}$与$\overrightarrow{b}$方向相同B.$\overrightarrow{a}$与$\overrightarrow{b}$方向相反C.$\overrightarrow{a}$与$\overrightarrow{b}$垂直D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,圆A与圆B交于C、D两点,圆心B在圆A上,DE为圆B的直径.已知CE=1,DE=4,则圆A的半径为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆mx2+4y2=1的离心率为$\frac{\sqrt{2}}{2}$,则实数m等于2或8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知三个命题如下:
①所有的素数都是奇数; 
②?x∈R,(x-1)2+1≥1;
③有的无理数的平方还是无理数.
则这三个命题中既是全称命题又是真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的右焦点F作两条相互垂直的直线分别交椭圆于A,B,C,D四点,则$\frac{1}{|AB|}+\frac{1}{|CD|}$的值为(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.1D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=lnx+2x,则不等式f(x2-3)<2的解集为(-2,$-\sqrt{3}$)∪($\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.
(Ⅰ)若O为△BCD的重心,N在棱AC上,且CF=2FN,求证:OF∥平面BDN.
(Ⅱ)求直线AD与平面DEF所成角的正弦值.

查看答案和解析>>

同步练习册答案