分析 (1)利用等差数列与等比数列的通项公式即可得出;
(2)利用“裂项求和”即可得出.
解答 解:(Ⅰ)∵a1=2,a3为a1和a9的等比中项,
∴${a_3}^2={a_1}{a_9}$,即(2+2d)2=2(2+8d),
化简得 d2=2d,
∵d>0,解得d=2,
∴an=2+2(n-1)=2n;
(Ⅱ)${b_n}=\frac{2}{{n({{a_n}+2})}}$=$\frac{2}{{n({2n+2})}}$=$\frac{1}{{n({n+1})}}$=$\frac{1}{n}-\frac{1}{n+1}$,
Sn=b1+b2+…+bn=$({1-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n}-\frac{1}{n+1}})$
=$\frac{n}{n+1}$.
点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | -6 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$与$\overrightarrow{b}$方向相同 | B. | $\overrightarrow{a}$与$\overrightarrow{b}$方向相反 | C. | $\overrightarrow{a}$与$\overrightarrow{b}$垂直 | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{6}$ | C. | 1 | D. | $\frac{7}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com