精英家教网 > 高中数学 > 题目详情
8.设a=log3π,b=log2$\sqrt{3}$,c=log3$\sqrt{2}$,则a、b、c的大小关系是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵b=log2$\sqrt{3}$=$\frac{1}{2}lo{g}_{2}^{3}$,c=log3$\sqrt{2}$=$\frac{1}{2}lo{g}_{3}^{2}$,$lo{g}_{2}^{3}•lo{g}_{3}^{2}$=1,∴$2>lo{g}_{2}^{3}>lo{g}_{3}^{2}>0$,
∴c<b<1.
又a=log3π>1,
∴a>b>c.
故选:A.

点评 本题考查对数函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,AC=12,∠ABC=2∠C.
(1)若∠C=30°,求△ABC的面积;
(2)若BD平分∠ABC,AH⊥BD于H,求BH的长;
(3)若sin∠C=$\frac{3}{5}$,求sin∠BAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为(  )
12
0.51
x
y
z
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则(  )
A.$\overrightarrow{a}$与$\overrightarrow{b}$方向相同B.$\overrightarrow{a}$与$\overrightarrow{b}$方向相反C.$\overrightarrow{a}$与$\overrightarrow{b}$垂直D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在区间(a,a+2)上的奇函数y=f(x),当0<x<a+2时,f(x)=-($\frac{1}{2}$)x+$\frac{1}{2}$,则y的取值范围是(-$\frac{1}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,圆A与圆B交于C、D两点,圆心B在圆A上,DE为圆B的直径.已知CE=1,DE=4,则圆A的半径为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆mx2+4y2=1的离心率为$\frac{\sqrt{2}}{2}$,则实数m等于2或8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的右焦点F作两条相互垂直的直线分别交椭圆于A,B,C,D四点,则$\frac{1}{|AB|}+\frac{1}{|CD|}$的值为(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.1D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.抛掷一枚质地不均匀的骰子,出现向上点数为1,2,3,4,5,6的概率依次记为p1,p2,p3,p4,p5,p6,经统计发现,数列{pn}恰好构成等差数列,且p4是p1的3倍.
(Ⅰ)求数列{pn}的通项公式;
(Ⅱ)甲、乙两人用这枚骰子玩游戏,并规定:掷一次骰子后,若向上点数为奇数,则甲获胜,否者乙获胜,请问这样的规则对甲、乙二人是否公平,请说明理由.

查看答案和解析>>

同步练习册答案