精英家教网 > 高中数学 > 题目详情
3.定义在区间(a,a+2)上的奇函数y=f(x),当0<x<a+2时,f(x)=-($\frac{1}{2}$)x+$\frac{1}{2}$,则y的取值范围是(-$\frac{1}{2}$,0).

分析 根据奇函数的性质先求出a,然后求函数的值域就可以了.

解答 解:因为定义在区间(a,a+2)上的奇函数y=f(x),
所以a+a+2=0,
解得:a=-1,
∴当0<x<1时,f(x)=-($\frac{1}{2}$)x+$\frac{1}{2}$∈(-$\frac{1}{2}$,0),
故答案为:(-$\frac{1}{2}$,0).

点评 本题主要考查奇函数的性质,以及函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若k∈[-2,2],则k的值使得过A(1,1)可以做两条直线与圆x2+y2+kx-2y-$\frac{5}{4}$k=0相切的概率等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,
PD=AD=2EC,EC∥PD.
(Ⅰ)求异面直线BD与AE所成角:
(Ⅱ)求证:BE∥平面PAD;
(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(1+a)lnx,g(x)=ax-$\frac{1}{x}$(a>0).
(1)若与f(x)的图象切于点A(1,f(1))的直线与函数g(x)的图象相切,求实数a的值;
(2)设F(x)=g(x)-f(x),若对任意a∈(1,3),x1,x2∈[1,3],恒有(m-ln3)a-ln3>|F(x1)-F(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2$\sqrt{2}$,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=$\frac{\sqrt{2}}{2}$,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a=log3π,b=log2$\sqrt{3}$,c=log3$\sqrt{2}$,则a、b、c的大小关系是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等腰△ABC中,AB=AC,D为AC中点,BD=1,则△ABC面积的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知2cos(π-x)+3cos($\frac{π}{2}$-x)=0,则tan2x=$\frac{12}{5}$,sin2x=$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给定正奇数n(n≥5),数列{an}:a1,a2,…an是1,2,…,n的一个排列,定义E(a1,a2,…an=|a1-1|+|a2-2|+…+|an-n|为数列{an}:a1,a2,…an的位差和.若位差和E(a1,a2,…an)=4,则满足条件的数列{an}:a1,a2,…an的个数为$\frac{(n-2)(n+3)}{2}$;  (用n表示)

查看答案和解析>>

同步练习册答案