分析 (1)基本事件数为n=43,3个旅游团选择3条不同线路包含的基本事件个数m1=A${\;}_{4}^{3}$,由此能求出3个旅游团选择3条不同的线路的概率.
(2)基本事件数为n=43,恰有两条线路没有被选择包含的基本事件个数m2=${C}_{4}^{2}{C}_{3}^{2}{A}_{2}^{2}$,由此能求出恰有2条线路没有被选择的概率.
(3)利用对立事件概率计算公式能求出至少有一个旅游团选择甲线路旅游的概率.
解答 解:(1)3个旅游团选择3条不同线路的概率为:
P1=$\frac{{A}_{4}^{3}}{{4}^{3}}$=$\frac{3}{8}$.
(2)恰有两条线路没有被选择的概率为:
P2=$\frac{{C}_{4}^{2}{C}_{3}^{2}{A}_{2}^{2}}{{4}^{3}}$=$\frac{9}{16}$.
(3)至少有一个旅游团选择甲线路旅游的概率:
p3=1-$\frac{{3}^{3}}{{4}^{3}}$=$\frac{37}{64}$.
点评 本题考查概率的求法,是中档题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{4}$ | B. | -2$\sqrt{2}$ | C. | -$\frac{{\sqrt{2}}}{4}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com