分析 分别求出关于p,q成立的x的范围,根据p是q的充分不必要条件,得到A⊆B,得到关于a的不等式组,解出即可.
解答 解:设A={x|(4x-3)2≤1},…(2分)
B={x|x2-(2a+1)x+a(a+1)≤0},
易知A={x|$\frac{1}{2}$≤x≤1},B={x|a≤x≤a+1}.…(5分)
由p是q的充分不必要条件,即A⊆B.…(6分)
所以$\left\{\begin{array}{l}{a≤\frac{1}{2}}\\{a+1≥1}\end{array}\right.$,
解得0≤a≤$\frac{1}{2}$.…(9分)
经检验知当a=0和a=$\frac{1}{2}$时均符合题意.…(10分).
点评 本题考查了充分必要条件,考查向量的运算以及解不等式问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | a2<b2 | B. | |a|<|b| | C. | $\frac{a}{b}$<1 | D. | $\frac{1}{a}$>$\frac{1}{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com