精英家教网 > 高中数学 > 题目详情
9.如图,长方体ABCD-A′B′C′D′中,AD=AA′=1,AB=2,点E是AB的中点.
(1)证明:BD′∥平面A′DE;
(2)证明:D′E⊥A′D.

分析 (1)取DC的中点F,连接D′F,FB,证明平面A′DE∥平面D′FB,即可证明BD′∥平面A′DE;
(2)连接AD′,则AD′⊥A′D,证明:AD′是D′E在平面ADD′A′中的射影,即可证明D′E⊥A′D.

解答 证明:(1)取DC的中点F,连接D′F,FB,
则BF∥ED,D′F∥A′E,
∵D′F∩FB=F,A′E∩ED=E,
∴平面A′DE∥平面D′FB,
∵BD′?平面D′FB,
∴BD′∥平面A′DE;
(2)连接AD′,则AD′⊥A′D,
∵长方体ABCD-A′B′C′D′中,AB⊥平面ADD′A′,
∴AD′是D′E在平面ADD′A′中的射影,
∴D′E⊥A′D.

点评 本题主要考查了直线与平面平行的判定,空间中直线与直线之间的位置关系,考查了空间想象能力和转化思想,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.关于x的不等式mx2-(m+2)x+m+1>0解集为R,则实数m的取值范围是(  )
A.m>$\frac{2\sqrt{3}}{3}$或m<-$\frac{2\sqrt{3}}{3}$B.m<-$\frac{2\sqrt{3}}{3}$或m>0C.m>$\frac{2\sqrt{3}}{3}$D.m<-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足a1=0,且$\frac{1}{{1-{a_{n+1}}}}$-$\frac{1}{{1-{a_n}}}$=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{{1-{a_{n+1}}}}{n}$,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在半径为2的圆内的一条直径上任取一点,过这个点作垂直该直径的弦,则弦长超过圆内接正三角形边长的概率是(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若方程x2+(m+2)x+m+5=0只有正根,则m的取值范围是(  )
A.m≤-4或m≥4B.-5<m≤-4C.-5≤m≤-4D.-5<m<-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}中,若a1=1,a2=2,an+2=an+2,则数列的通项公式an=n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设$命题p:\overrightarrow a=(x,-1),\overrightarrow b=(4,3),|{\overrightarrow a•\overrightarrow b}|≤1$;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.sin(75°-α)=(  )
A.sin(15°-α)B.sin(15°+α)C.cos(15°-α)D.cos(15°+α)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左焦点为F(-1,0),过D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,$\overrightarrow{AE}$•$\overrightarrow{BE}$恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案