精英家教网 > 高中数学 > 题目详情
6.四棱锥P-ABCD中,侧棱PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AD⊥DC,且AB=AD=1,PD=DC=2,E是CD的中点.
(Ⅰ)求异面直线AE与PC所成的角;
(Ⅱ)线段PB上是否存在一点Q,使得PC⊥平面ADQ?若存在,求出$\frac{PB}{QB}$的值;若不存在,请说明理由.

分析 (I)以D为坐标原点,分别以$\overrightarrow{DA},\overrightarrow{DC},\overrightarrow{D{D_1}}$为x轴、y轴、z轴的正方向建立空间直角坐标系,由向量法得到异面直线AE与PC所成的角;
(II)假设线段PB上存在一点Q,使PC⊥平面ADQ,设$\frac{PB}{QB}=λ(λ>0)$,由向量法能求出λ=3,由此得到线段PB上存在一点Q,使得PC⊥平面ADQ,且$\frac{PB}{QB}$=3.

解答 解:以D为坐标原点,分别以$\overrightarrow{DA},\overrightarrow{DC},\overrightarrow{D{D_1}}$为x轴、y轴、z轴的正方向建立空间直角坐标系,则D(0,0,0),A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,2),E(0,1,0).…(2分)
( I)$\overrightarrow{AE}=({-1,1,0}),\overrightarrow{PC}=({0,2,-2})$.
则$cos<\overrightarrow{AE},\overrightarrow{PC}>=\frac{{\overrightarrow{AE}•\overrightarrow{PC}}}{{|{\overrightarrow{AE}}|•|{\overrightarrow{PC}}|}}=\frac{2}{{\sqrt{2}•2\sqrt{2}}}=\frac{1}{2}$…(4分)
∴$<\overrightarrow{AE},\overrightarrow{PC}>={60^0}$,即异面直线AE与PC所成的角为60°.…(6分)
( II)假设线段PB上存在一点Q,使PC⊥平面ADQ,设$\frac{PB}{QB}=λ(λ>0)$.
设Q(x,y,z),则$\overrightarrow{PB}=λ\overrightarrow{QB}$,即(1,1,-2)=λ(1-x,1-y,-z),

∴$x=1-\frac{1}{λ},y=1-\frac{1}{λ},z=\frac{2}{λ}$.…(8分)
$\overrightarrow{DA}=({1,0,0}),\overrightarrow{DQ}=({x,y,z}),\overrightarrow{PC}=({0,2,-2})$.
∵PC⊥平面ADQ,∴$\left\{{\begin{array}{l}{\overrightarrow{PC•}\overrightarrow{DA}=0}\\{\overrightarrow{PC}•\overrightarrow{DQ}=2y-2z=0}\end{array}}\right.$,∴y=z,即$1-\frac{1}{λ}=\frac{2}{λ}$,∴λ=3.
即线段PB上存在一点Q,使得PC⊥平面ADQ,且$\frac{PB}{QB}=3$.…(12分)

点评 本题考查线面角,考查使得线面垂直的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知当1≤x≤2时,不等式x2-kx+k+1≥0恒成立,则实数k的取值范围是k≤5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在半径为2的圆内的一条直径上任取一点,过这个点作垂直该直径的弦,则弦长超过圆内接正三角形边长的概率是(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}中,若a1=1,a2=2,an+2=an+2,则数列的通项公式an=n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设$命题p:\overrightarrow a=(x,-1),\overrightarrow b=(4,3),|{\overrightarrow a•\overrightarrow b}|≤1$;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四面体ABCD中,截面PQMN是正方形,求证:
(1)AC∥截面PQMN;
(2)AC⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.sin(75°-α)=(  )
A.sin(15°-α)B.sin(15°+α)C.cos(15°-α)D.cos(15°+α)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,若a=2,A=30°,B=45°,则边b的大小为(  )
A.$2\sqrt{2}$B.2C.$\sqrt{6}+\sqrt{2}$D.$\sqrt{6}+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,某居民小区内建一块直角三角形草坪ABC,直角边AB=40米,AC=40$\sqrt{3}$米,扇形花坛ADE是草坪的一部分,其半径为20米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设两条小路OM和ON,考虑到小区整体规划,要求M、N在斜边BC上,O在弧$\widehat{DE}$上,OM∥AB,ON∥AC,.
(1)设∠OAE=θ,记f(θ)=OM+ON,求f(θ)的表达式,并求出此函数的定义域;
(2)经核算,两条路每米铺设费用均为400元,如何设计θ的大小使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

同步练习册答案