精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥中,底面.

(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;

(2)当直线与平面所成的角为45°时,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】

(1)根据几何关系得到,进而得到点面距离;(2)根据线面角得到,所以,建立坐标系求得面的法向量由向量夹角的计算公式,进而得到二面角的余弦值.

(1)由,则

,由

,则点到平面的距离为一个定值,.

(2)由在平面上的射影,则为直线与平面

所成的角,则,所以.

,故直线两两垂直,因此,以点

为坐标原点,以所在的直线分别为轴、轴、轴建立如图所示的空间

直角坐标系,易得,于是

设平面的法向量为,则,即,取,则

,于是;显然为平面的一个法向量,

于是,

分析知二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率为是椭圆上的一个动点,且面积的最大值为.

(1)求椭圆的方程;

(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为是椭圆上两点,是坐标原点,且,离心率为.

(1)求椭圆的方程;

(2)过作两条相互垂直的直线分别交椭圆于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左顶点,且点在椭圆上, 分别是椭圆的左、右焦点。过点作斜率为的直线交椭圆于另一点直线交椭圆于点.

1求椭圆的标准方程;

2为等腰三角形,求点的坐标;

3,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系.己知直线的直角坐标方程为,曲线C的极坐标方程为

1)设t为参数,若,求直线的参数方程和曲线C的直角坐标方程;

2)已知:直线与曲线C交于AB两点,设,且依次成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时值金秋十月,正是秋高气爽,阳光明媚的美好时刻。复兴中学一年一度的校运会正在密锣紧鼓地筹备中,同学们也在热切地期盼着,都想为校运会出一份力。小智同学则通过对学校有关部门的走访,随机地统计了过去许多年中的五个年份的校运会“参与”人数及相关数据,并进行分析,希望能为运动会组织者科学地安排提供参考。

附:①过去许多年来学校的学生数基本上稳定在3500人左右;②“参与”人数是指运动员和志愿者,其余同学均为“啦啦队员”,不计入其中;③用数字12345表示小智同学统计的五个年份的年份数,今年的年份数是6

统计表(一)

年份数x

1

2

3

4

5

“参与”人数(y千人)

1.9

2.3

2.0

2.5

2.8

统计表(二)

高一(3)(4)班参加羽毛球比赛的情况:

男生

女生

小计

参加(人数)

26

b

50

不参加(人数)

c

20

小计

44

100

1)请你与小智同学一起根据统计表(一)所给的数据,求出“参与”人数y关于年份数x的线性回归方程,并预估今年的校运会的“参与”人数;

2)学校命名“参与”人数占总人数的百分之八十及以上的年份为“体育活跃年”.如果该校每届校运会的“参与”人数是互不影响的,且假定小智同学对今年校运会的“参与”人数的预估是正确的,并以这6个年份中的“体育活跃年”所占的比例作为任意一年是“体育活跃年”的概率。现从过去许多年中随机抽取9年来研究,记这9年中“体活跃年”的个数为随机变量,试求随机变量的分布列、期望和方差

3)根据统计表(二),请问:你能否有超过60%的把握认为“羽毛球运动”与“性别”有关?

参考公式和数据一:

参考公式二:,其中

参考数据:

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,命题p:函数内单调递增;q:函数仅在处有极值.

1)若命题q是真命题,求a的取值范围;

2)若命题是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为,且

(1)求的值;

(2)若,求三角形ABC的面积的值.

查看答案和解析>>

同步练习册答案