【题目】已知四棱锥中,底面,,,,.
(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)当直线与平面所成的角为45°时,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,离心率为,是椭圆上的一个动点,且面积的最大值为.
(1)求椭圆的方程;
(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,是椭圆上两点,是坐标原点,且,,离心率为.
(1)求椭圆的方程;
(2)过作两条相互垂直的直线分别交椭圆于和,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的左顶点,且点在椭圆上, 分别是椭圆的左、右焦点。过点作斜率为的直线交椭圆于另一点,直线交椭圆于点.
(1)求椭圆的标准方程;
(2)若为等腰三角形,求点的坐标;
(3)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系.己知直线的直角坐标方程为,曲线C的极坐标方程为.
(1)设t为参数,若,求直线的参数方程和曲线C的直角坐标方程;
(2)已知:直线与曲线C交于A,B两点,设,且,,依次成等比数列,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】时值金秋十月,正是秋高气爽,阳光明媚的美好时刻。复兴中学一年一度的校运会正在密锣紧鼓地筹备中,同学们也在热切地期盼着,都想为校运会出一份力。小智同学则通过对学校有关部门的走访,随机地统计了过去许多年中的五个年份的校运会“参与”人数及相关数据,并进行分析,希望能为运动会组织者科学地安排提供参考。
附:①过去许多年来学校的学生数基本上稳定在3500人左右;②“参与”人数是指运动员和志愿者,其余同学均为“啦啦队员”,不计入其中;③用数字1、2、3、4、5表示小智同学统计的五个年份的年份数,今年的年份数是6;
统计表(一)
年份数x | 1 | 2 | 3 | 4 | 5 |
“参与”人数(y千人) | 1.9 | 2.3 | 2.0 | 2.5 | 2.8 |
统计表(二)
高一(3)(4)班参加羽毛球比赛的情况:
男生 | 女生 | 小计 | |
参加(人数) | 26 | b | 50 |
不参加(人数) | c | 20 | |
小计 | 44 | 100 |
(1)请你与小智同学一起根据统计表(一)所给的数据,求出“参与”人数y关于年份数x的线性回归方程,并预估今年的校运会的“参与”人数;
(2)学校命名“参与”人数占总人数的百分之八十及以上的年份为“体育活跃年”.如果该校每届校运会的“参与”人数是互不影响的,且假定小智同学对今年校运会的“参与”人数的预估是正确的,并以这6个年份中的“体育活跃年”所占的比例作为任意一年是“体育活跃年”的概率。现从过去许多年中随机抽取9年来研究,记这9年中“体活跃年”的个数为随机变量,试求随机变量的分布列、期望和方差;
(3)根据统计表(二),请问:你能否有超过60%的把握认为“羽毛球运动”与“性别”有关?
参考公式和数据一:,,,
参考公式二:,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com