精英家教网 > 高中数学 > 题目详情
9.已知点P是抛物线y2=4x上一点,当点P到直线y=x+3的距离最短时,点P的坐标为(1,2).

分析 先设直线y=x+t是抛物线的切线,最小距离是两直线之间的距离,于抛物线方程联立消去y,再根据判别式等于0求得t,代入方程求得x,进而求得y,答案可得.

解答 解:设直线y=x+t是抛物线的切线,最小距离是两直线之间的距离,
代入化简得x2+(2t-4)x+t2=0
由△=0得t=1
代入方程得x=1,y=1+1=2
∴P为(1,2).
故答案为:(1,2).

点评 本题主要考查了抛物线的简单性质,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设全集U=R,A={x|x(x-2)<0},B={x|1-x>0},则A∩(∁UB)等于(  )
A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若复数t=$\frac{2}{(1-i)^{2}}$+$\frac{3+i}{1-i}$的虚部为m,函数f(x)=x+$\frac{4}{x-1}$+1,(x∈{2,3})的最小值为n.
(1)求m,n的值;
(2)如图,一个圆锥的底面半径为m,高为n,在其中有一个半径为x的内接圆柱,当x为何值时,圆柱的侧面积最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}为等差数列,若a2=3,a1+a4=12,则a7+a8+a9=(  )
A.36B.42C.117D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.盒子中分别有红球3个、白球2个、黑球1个,共6个球,从中任意取出两个球,则与事件“至少有一个白球”互斥而不对立的事件是(  )
A.都是白球B.至少有一个红球C.至少有一个黑球D.红、黑球各一个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若抛物线y2=2px的焦点与双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点重合,则p=(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.囧函数y=$\frac{b}{|x|-a}$(a>0,b>0)的图象酷似汉字中的“囧”字,我们称其为“囧函数”.囧函数y=ax+$\frac{b}{x}$(a>0,b≠0)的图象类似“对勾函数”,对于两个简单的“囧函数”f(x)=$\frac{1}{|x|-1}$和“对勾函数”g(x)=x+$\frac{1}{x}$,下列叙述中正确的是①③④.
①f(x)是偶函数,g(x)是奇函数;②f(x)既有极大值,也有极小值;③g(x)既有极大值,也有极小值;④两个图象有且仅有2个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若集合A={1,2},B={2,2m},A∪B={1,2,4},则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和为Sn,且a2=-5,S5=-20.
(1)求数列{an}的通项公式;
(2)求Sn取得最小值时n的取值.

查看答案和解析>>

同步练习册答案