精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0),F1,F2为双曲线的左右焦点,若在双曲线的右焦点上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率的取值范围是
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设P点的横坐标为x,根据|PF1|=3|PF2|,P在双曲线右支(x≥a),利用双曲线的第二定义,可得x关于e的表达式,进而根据x的范围确定e的范围.
解答: 解:设P点的横坐标为x
∵|PF1|=3|PF2|,P在双曲线右支(x≥a)
根据双曲线的第二定义,可得3e(x-
a2
c
)=e(x+
a2
c

∴ex=2a
∵x≥a,∴ex≥ea
∴2a≥ea,∴e≤2
∵e>1,∴1<e≤2
故答案为:1<e≤2.
点评:本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线y=kx+b过原点的条件是(  )
A、k=0
B、b=0
C、k=0且b=0
D、k≠0且b=0

查看答案和解析>>

科目:高中数学 来源: 题型:

OA
=
e1
OB
=
e2
,若
e1
e2
不共线,且点P在线段AB中点上,如图所示,若
OP
=λ
e1
e2
,则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列现象是不可能现象的是(  )
A、导电通电时发热
B、不共线的三点确定一个平面
C、没有水分种子发芽
D、某人买彩票连续两周都中奖

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角正弦之比sinA:sinB:sinC=2:3:
7
,则角C等于(  )
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线方程为ax+y2=0(a≠0),则准线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,为了计算某湖岸边两景点B与C的距离,由于地形的限制,需要岸上A和D两个测量点,现测得AD⊥CD,AD=10km,AB=14km,∠BDA=60°,∠BCD=135°,则两景点B与C之间的距离为(假设A,B,C,D在同一平面内)(  )
A、16km
B、8
2
km
C、16
2
km
D、8km

查看答案和解析>>

科目:高中数学 来源: 题型:

用计算机随机产生的有序二元数组(x,y),满足条件-1<x<1,-1<y<1,记事件E为 x2+y2≤1,则E发生的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*).若b3=-2,b10=12,求a8的值.

查看答案和解析>>

同步练习册答案