精英家教网 > 高中数学 > 题目详情
17.在复平面内,复数z和$\frac{1+i}{1-2i}$所表示的点关于虚轴对称,则z=(  )
A.-$\frac{1}{5}$+$\frac{3}{5}$iB.$\frac{1}{5}$+$\frac{3}{5}$iC.$\frac{1}{5}$-$\frac{3}{5}$iD.-$\frac{1}{5}$-$\frac{3}{5}$i

分析 由复数代数形式的乘除运算化简$\frac{1+i}{1-2i}$,又复数z和$\frac{1+i}{1-2i}$所表示的点关于虚轴对称,则答案可求.

解答 解:∵$\frac{1+i}{1-2i}$=$\frac{(1+i)(1+2i)}{(1-2i)(1+2i)}=\frac{-1+3i}{5}=-\frac{1}{5}+\frac{3}{5}i$,
又复数z和$\frac{1+i}{1-2i}$所表示的点关于虚轴对称,
∴z=$\frac{1}{5}+\frac{3}{5}i$.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知角α的终边上一点的坐标为(sin$\frac{π}{6}$,cos$\frac{π}{6}$),则角α的最小正值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数是奇函数的是(  )
A.f(x)=(x-1)$\sqrt{\frac{1+x}{1-x}}$B.f(x)=$\frac{|x|}{x}$
C.f(x)=$\left\{\begin{array}{l}{1+x,(x≥0)}\\{1-x(x<0)}\end{array}\right.$D.f(x)=$\frac{1}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$且$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从(40,30),(50,10),(20,30),(45,5),(10,10)这5个点中任取一个点,这个点在圆x2+y2=2016内部的概率是(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.长方体ABCD-A1B1C1D1中,AB=BC=2a,AA1=a,E和F分别是A1B1和BB1的中点,求:
(1)EF和AD1所成角的正弦值;
(2)AC1和B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.当-1≤x≤1,函数y=2x-2的值域为(  )
A.[-$\frac{3}{2}$,0]B.[0,$\frac{3}{2}$]C.[-1,0]D.[-$\frac{3}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{9}$C.$\frac{1}{6}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(1-k)x+$\frac{m}{x}$+2,其中k,m∈R,且m≠0.
(1)求函数f(x)的定义域;
(2)k如何取值时,方程f(x)=0有解,并求出方程的解.

查看答案和解析>>

同步练习册答案