精英家教网 > 高中数学 > 题目详情
9.若x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y-a,⑤$\frac{a}{y}$>$\frac{b}{x}$这五个式子中,不恒成立的不等式序号是①③⑤.

分析 注意不等式的性质成立的条件,由条件出发举反例即可.

解答 解:①令a=1,b=0,x=3,y=-2,故不成立;
②a+x>b+y成立,
③令a=0,b=-2,x=3,y=-2,则ax>by不成立,
④x-b>y-a成立,
⑤令a=0,b=-2,x=3,y=-2,则$\frac{a}{y}$>$\frac{b}{x}$不成立.
故不恒成立的不等式序号是①③⑤
故答案为:①③⑤.

点评 本题考查了不等式的性质,要特别不等式的性质成立的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,海上有A,B两个小岛相距10km,船O将保持观望A岛和B岛所成的视角为60°,现从船O上派下一只小艇沿BO方向驶至C处进行作业,且OC=BO.设AC=10$\sqrt{3}$km,则OA2+OB2=200.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.现安排甲、乙、丙、丁、戊5名同学参加课外兴趣活动,要求每人参加体育、音乐、美术、科技制作四项中的一项,每项兴趣活动至少有一人参加,甲、乙不想参加体育兴趣活动,其他同学四项兴趣活动都愿意参加,则不同安排方案的种数是(  )
A.152种B.54种C.90种D.126种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.5名医护志愿者到3所敬老院参加义诊,则每个地方至少有一名志愿者的方案有150种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定点M(1,0),A、B是椭圆$\frac{{x}^{2}}{4}$+y2=1上的两动点,且$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,则$\overrightarrow{AM}$•$\overrightarrow{AB}$的最小值是(  )
A.$\frac{3}{5}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O经过两个焦点,A,B是椭圆C的长轴端点.
(1)求椭圆C的标准方程和圆O的方程;
(2)设P、Q分别是椭圆C和圆O上位于y轴两侧的动点,若直线PQ与x平行,直线AP、BP与y轴的交点即为M、N,试证明∠MQN为直角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=$\sqrt{2}$,则球O的体积等于(  )
A.$\frac{{\sqrt{3}π}}{2}$B.$\frac{4π}{3}$C.$\frac{{\sqrt{2}π}}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知F(c,0)是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点;圆F:(x-c)2+y2=a2与x轴交于D,E两点,其中E是椭圆C的左焦点.
(1)求椭圆C的离心率;
(2)设圆F与y轴的正半轴的交点为B,点A是点D关于y轴的对称点,试判断直线AB与圆F的位置关系;
(3)设直线BF与椭圆C交于另一点G,直线BD与椭圆C交于另一点M,若△BMG的面积为$\frac{32\sqrt{3}}{13}$,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在地面A,B两点仰望一僚望塔CD的顶部C,得仰角分别为60°、30°,又在塔底D测得A,B的张角为60°,已知AB=10$\sqrt{21}$米,试求瞭望塔的高度.

查看答案和解析>>

同步练习册答案