精英家教网 > 高中数学 > 题目详情
10.已知直线$\sqrt{3}$x+y-$\sqrt{3}$=0经过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点和上顶点.
(1)求椭圆C的标准方程;
(2)过点(0,-2)的直线l与椭圆C交于不同的A,B两点,若∠AOB为钝角,求直线l斜率k的取值范围;
(3)过椭圆C上异于其顶点的任一点P作圆O:x2+y2=2的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴,y轴上截距分别为m,n,证明:$\frac{1}{4{m}^{2}}+\frac{1}{3{n}^{2}}$为定值.

分析 (1)由已知中直线$\sqrt{3}$x+y-$\sqrt{3}$=0经过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点和上顶点,可得椭圆C的标准方程;
(2)设出直线方程,代入椭圆方程,利用韦达定理,及∠AOB为钝角,建立不等式,即可求得直线l的斜率k的取值范围;
(3)由切线的性质,结合四点共圆判断可得P,M,O,N四点共圆,可得其圆心O'($\frac{{x}_{p}}{2}$,$\frac{{y}_{p}}{2}$),求得圆方程,由两圆方程相减可得相交弦方程,由题意可得P1P2的方程为$\frac{x}{m}+\frac{y}{n}$=1,求得P的坐标,代入椭圆方程即可得证.

解答 解:(1)直线$\sqrt{3}$x+y-$\sqrt{3}$=0经过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点和上顶点.
故c=1,b=$\sqrt{3}$,
故a=2,
故椭圆C的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)显然直线x=0不满足条件,可设直线l:y=kx-2,A(x1,y1),B(x2,y2
直线代入椭圆方程,消去y可得(3+4k2)x2-16kx+4=0
∵△=(16k)2-12×(3+4k2)>0,∴k<-$\frac{3\sqrt{13}}{26}$或k>$\frac{3\sqrt{13}}{26}$
x1+x2=$\frac{16k}{3+4{k}^{2}}$,x1x2=$\frac{4}{3+4{k}^{2}}$
∴y1y2=(kx1-2)(kx2-2)=k2x1x2-2k(x1+x2)+4=$\frac{12-16{k}^{2}}{3+4{k}^{2}}$
由于∠AOB为钝角,x1x2+y1y2<0,∴$\frac{16-16{k}^{2}}{3+4{k}^{2}}$<0,
∴k<-1或k>1
∴直线L的斜率的取值范围是k<-1或k>1
证明:(3)因为MN为切点,所以OM⊥PM,ON⊥PN,
所以P,M,O,N四点共圆,
其圆心O'($\frac{{x}_{p}}{2}$,$\frac{{y}_{p}}{2}$),方程为(x-$\frac{{x}_{p}}{2}$)2+(y-$\frac{{y}_{p}}{2}$)2=$\frac{{x}_{p}^{2}+{y}_{p}^{2}}{4}$,
整理得x2+y2-xxP-yyP=0,
MN是圆O与圆O'的交点,
联立圆O:x2+y2=2的方程得xxP+yyP=2,
直线MN在x轴,y轴上的截距分别为m,n,
可得直线MN的方程为$\frac{x}{m}+\frac{y}{n}$=1,
得xP=$\frac{2}{m}$,yP=$\frac{2}{n}$,
因为P(xP,yP)在椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$上,
则$\frac{{(\frac{2}{m})}^{2}}{4}+\frac{{(\frac{2}{n})}^{2}}{3}=1$,
整理得$\frac{1}{4{m}^{2}}+\frac{1}{3{n}^{2}}$=1

点评 本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若ab>0,ac<0,则直线ax+by+c=0不经过第三象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x>0,y>0,若2y2+8x2-(m2-2m)xy>0恒成立,则实数m的取值范围是(  )
A.-2<m<4B.-4<m<2C.2<m<4D.-4<m<4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的中心O为圆心,以$\sqrt{\frac{ab}{2}}$为半径的圆称为该椭圆的“伴随”.已知椭圆的离心率为$\frac{{\sqrt{3}}}{2}$,抛物线x2=8y的准线过此椭圆的一个顶点.
(Ⅰ) 求椭圆C及其“伴随”的方程;
(Ⅱ)如果直线m:y=x-b与抛物线x2=8y交于M,N两点,且$\overrightarrow{OM}•\overrightarrow{ON}=0$,求实数b的值;
(Ⅲ) 过点P(0,m)作“伴随”的切线l交椭圆C于A,B两点,记△A0B(0为坐标原点)的面积为S△A0B,将S△A0B表示为m的函数,并求S△A0B的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知m∈R,函数f(x)=x3-mx在[1,+∞)上是单调增函数,则m的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
在如图所示的阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的
中点,连接DE,BD,BE.
(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马P-ABCD的体积为V1,四面体EBCD的体积为V2,求$\frac{{V}_{1}}{{V}_{2}}$的值.
(理科专用)(Ⅲ)若面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$,求$\frac{DC}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求证:PB∥平面EAC;
(3)求直线EC与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某公司客服中心有四部咨询电话,某一时刻每部电话能否被接通是相互独立的.已知每部电话响第一声时被接通的概率是0.1,响第二声时被接通的概率是0.3,响第三声时被接通的概率是0.4,响第四声时被接通的概率是0.1.假设有ξ部电话在响四声内能被接通.
(Ⅰ)求四部电话至少有一部在响四声内能被接通的概率;
(Ⅱ)求随机变量ξ的分布列及期望.

查看答案和解析>>

同步练习册答案