精英家教网 > 高中数学 > 题目详情
12.如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?

分析 根据两点间的距离公式以及点的对称性,建立方程组关系进行求解即可.

解答 解:过A作直线l的对称点A′,连A′B交l于P,
∵|AP′|+|P′B|=|A′P′|+|BP′|>|A′B|,
∴P点即为所求.
设A′(a,b),则$\left\{\begin{array}{l}{\frac{a+1}{2}+2•\frac{b+2}{2}-10=0}\\{\frac{b-2}{a-1}•(-\frac{1}{2})=-1}\end{array}\right.$,
即$\left\{\begin{array}{l}{a+2b=15}\\{b=2a}\end{array}\right.$,解得a=3,b=6,
即A′(3,6),
∴直线A′B的方程为$\frac{y-0}{6-0}=\frac{x-4}{3-4}$,即6x+y-24=0,
由$\left\{\begin{array}{l}{6x+y-24=0}\\{x+2y-10=0}\end{array}\right.$,解得x=$\frac{38}{11}$,y=$\frac{36}{11}$,
即P($\frac{38}{11}$,$\frac{36}{11}$),
故供水站P应建在P($\frac{38}{11}$,$\frac{36}{11}$),才能使管道最省.

点评 本题主要考查直线对称性的应用,以及直线交点坐标的求解,利用数形结合是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某校举行一种游戏,将30分之内完成游戏的定为“游戏成功”,否则定为“游戏失败”,现随机抽取了100名参赛者进行调查,这100人中男女比例为3:2,“游戏成功”与“游戏失败”人数之比3:2,“游戏成功”中男女比例为2:1.
(1)根据已知数据,建立一个2×2列联表;
(2)据此资料,请问有多少把握认为“游戏成功”与性别是否有关?
参考资料:
P(x2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是“向量的线性运算”知识结构图,如果要加入“三角形法则”和“平行四边形法则”,应该放在(  )
A.“向量的加减法”中“运算法则”的下位
B.“向量的加减法”中“运算律”的下位
C.“向量的数乘”中“运算法则”的下位
D.“向量的数乘”中“运算律”的下位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.二次曲线$\left\{{\begin{array}{l}{x=3cosθ}\\{y=5sinθ}\end{array}}\right.$(θ是参数)的离心率是(  )
A.$\frac{3}{5}$B.$\frac{3}{4}$C.$\frac{{\sqrt{34}}}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若点(x,y)在圆$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}\right.$(θ为参数)上,则x2+y2的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若$\vec a=({4,-2}),\vec b=({k,-1})$,且$\vec a⊥\vec b$,则k=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.二次函数f(x)=7x2-(m+13)x-m-2(m∈R)的两个零点分别分布在区间(0,1)和(1,2)内,则实数m的取值范围为(-4,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t为参数),过其焦点F的直线l与抛物线分别交于A、B两点(A在第一象限内),|AF|=3|FB|,过AB的中点且垂于l的直线与x轴交于点G,则△ABG的面积为$\frac{32\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=(2x+5)6,在函数f'(x)中x3的系数是(  )
A.2000B.12000C.24000D.非以上答案

查看答案和解析>>

同步练习册答案