精英家教网 > 高中数学 > 题目详情
4.二次函数f(x)=7x2-(m+13)x-m-2(m∈R)的两个零点分别分布在区间(0,1)和(1,2)内,则实数m的取值范围为(-4,-2).

分析 由函数零点的判定定理列出不等式组,求得实数m的取值范围.

解答 解:由题意可知:二次函数f(x)=7x2-(m+13)x-m-2(m∈R)的两个零点
分别在区间(0,1)和(1,2),
$\left\{\begin{array}{l}{f(0)>0}\\{f(1)<0}\\{f(2)>0}\end{array}\right.$,即$\left\{\begin{array}{l}{-m-2>0}\\{-2m-8<0}\\{-3m>0}\end{array}\right.$,解得:-4<m<-2,
∴实数m的取值范围(-4,-2),
故答案为:(-4,-2).

点评 本题考查一元二次函数零点的判定,考查不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lg(2-x)-lg(2+x).
(1)求函数f(x)的定义域.
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设离散型随机变量X~N(0,1),则P(X≤0)=0.5;P(-2<X≤2)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\vec a=({1,2}),\vec b=({-2,y})$,且$\vec a∥\vec b$.求:
(Ⅰ)$\vec a•\vec b$;
(Ⅱ)$2\vec a-\vec b$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$f(x)=ln(x-1)+\sqrt{2-x}$的定义域为(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)(1-3i)-(2+5i)+(-4+9i);
(2)(1+2i)÷(3-4i)
(3)(1+2i)(3-4i)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.
(1)求证:DE∥平面PBC;
(2)求PB与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
可用公式:$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n(\overline x{)^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{({x_i}-\overline x{)^2}}}}$,$\widehat{a}$=$\overline y$-$\widehat{b}$$\overline x$.

查看答案和解析>>

同步练习册答案