精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)是定义在R上的奇函数,当x>0时.f(x)=x2+$\root{3}{x}$,求f(x).

分析 利用函数的奇偶性直接求解函数的解析式即可.

解答 解:函数f(x)是定义在R上的奇函数,当x>0时.f(x)=x2+$\root{3}{x}$,
可得f(0)=0.
x<0时,-x>0,
f(x)=-f(-x)=-((-x)2+$\root{3}{-x}$)=-(x2-$\root{3}{x}$)=$\root{3}{x}$-x2
f(x)=$\left\{\begin{array}{l}{x}^{2}+\root{3}{x},x>0\\ 0,x=0\\ \root{3}{x}-{x}^{2},x<0\end{array}\right.$.

点评 本题考查函数的奇偶性的应用,函数的解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.底面是菱形的直四棱柱中.它的对角线长为9和15.高是5.求该直四棱柱的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若{x|2x-a=0}⊆{x|-1<x<3},则实数a的取值范围是(-2,6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若R上的奇函数y=f(x)在[1,3]上单调递增,则y在[-3,-1]上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求与圆x2+y2=5相切于点A(2,1)且过B(4,3)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足0<a1≠1,且an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,(n∈N*).
(1)求证:an+1≠an
(2)若a1=$\frac{1}{3}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.cos228°+tan36°cot45°tan54°+cos262°的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x||x-a|<1,x∈R},B={x|y=$\frac{1}{\sqrt{{x}^{2}-6x+5}}$}.若A∩B=∅,则实数a的取值范围是(  )
A.{a|0≤a≤6}B.{a|a≤2,或a≥4}C.{a|a≤0,或a≥6}D.{a|2≤a≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若2a=3,3b=5,试用a与b表示log4572.

查看答案和解析>>

同步练习册答案