精英家教网 > 高中数学 > 题目详情
函数f(x)=(mx+1)(lnx-1).
(1)若m=1,求曲线y=f(x)在x=1的切线方程;
(2)若函数f(x)在(0,+∞)上是增函数,求实数m的取值范围;
(3)设点P(m,0),A(x1,f(x1)),B(x2,f(x2))满足lnx1•lnx2=ln(x1•x2)(x1≠x2),
判断是否存在实数m,使得∠APB为直角?说明理由.
考点:利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:转化思想,导数的综合应用
分析:(1)通过m=1,求出取得坐标,切线的斜率,然后求曲线y=f(x)在x=1的切线方程;
(2)求出函数的对数,通过函数f(x)在(0,+∞)上是增函数,导数大于等于0.构造新函数,通过新函数的值域,求解实数m的取值范围;
(3)设点P(m,0),A(x1,f(x1)),B(x2,f(x2))满足lnx1•lnx2=ln(x1•x2)(x1≠x2),化简向量数量积的表达式,推出数量积是否为0,即可判断是否存在实数m,使得∠APB为直角.
解答: (本题满分16分)
解:(1)m=1,函数f(x)=(x+1)(lnx-1).切点坐标(1,-2),
f′(x)=(lnx-1)+(x+1)
1
x
.f′(1)=1,
∴切线方程为:y+2=x-1.
即:x-y-3=0.  …(3分)
(2)f′(x)=
mxlnx+1
x
≥0
在(0,+∞)恒成立,…(5分)
设h(x)=xlnx,h(x)值域[-e-1,+∞),
即mt+1≥0在t∈[-e-1,+∞)恒成立,
m≥0
-e-1m+1≥0
,0≤m≤e.…(10分)
(3)
PA
=(x1-m,f(x1)),
PB
=(x2-m,f(x2))

PA
PB
=(x1-m)(x2-m)+f(x1)f(x2)
=(x1-m)(x2-m)+(mx1+1)(mx2+1)(lnx1-1)(lnx2-1)=(x1-m)(x2-m)+(mx1+1)(mx2+1)=(m2+1)(x1x2+1)>0,
∴不存在实数m,使得∠APB为直角.…(16分)
点评:本题考查函数的导数的应用,切线方程的求法,函数恒成立,考查转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:函数f(x)=x2-2mx+1在(1,+∞)上是增函数,q:函数g(x)=x+m在区间[-1,1]上有零点,那么p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:?x≥0,使得2x=3,则¬P命题为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在闭区间[-2,2]上随机的取两个实数a和b,则使得关于x的二次方程ax2-bx+a=0有实数根的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-4ax2+5x(a∈R).
(1)当a=1时,求函数在区间[0,2]上的最大值;
(2)若函数f(x)在区间(0,2]上无极值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
x
2
-
π
8
)=
2
3
,则cos(x+
4
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx2+lnx-2x在x=1处的切线与直线x-4y+1=0垂直,则函数f(x)的单调增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆C的左右焦点,过F1的直线l与椭圆C交与A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则椭圆C的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:(2m+1)x+(m+1)y=7m+4,圆C:(x-1)2+(y-2)2=25
(1)求直线l经过的定点坐标;
(2)求证:直线l与圆C总相交(提示:只需证明直线l经过圆内的一点);
(3)求出相交弦长的最小值及对应的m值.

查看答案和解析>>

同步练习册答案