精英家教网 > 高中数学 > 题目详情
5.若直线l 的方向向量为$\overrightarrow{a}$,平面α的法向量为$\overrightarrow{n}$且l?α,则能使l∥α的是(  )
A.$\overrightarrow a=(1,-1,3),\overrightarrow n=(0,3,1)$B.$\overrightarrow a=(1,0,0),\overrightarrow n=(-2,0,0)$
C.$\overrightarrow a=(0,2,1),\overrightarrow n=(-1,0,-1)$D.$\overrightarrow a=(1,3,5),\overrightarrow n=(1,0,1)$

分析 只需满足$\overrightarrow{a}•\overrightarrow{n}$=0即可.

解答 解:若l∥α,则$\overrightarrow{a}⊥\overrightarrow{n}$,即$\overrightarrow{a}•\overrightarrow{n}$=0.
对于A,$\overrightarrow{a}•\overrightarrow{n}$=0-3+3=0,符合题意;
对于B,$\overrightarrow{a}•\overrightarrow{n}$=-2,不符合题意;
对于C,$\overrightarrow{a}•\overrightarrow{n}$=-1,不符合题意;
对于D,$\overrightarrow{a}•\overrightarrow{n}$=1+0+5=6,不符合题意.
故选A.

点评 本题考查了空间向量在证明平行垂直关系时的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若函数exf(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是(  )
A.f(x)=2-xB.f(x)=x2C.f(x)=3-xD.f(x)=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$=(3,m),且$\overrightarrow{a}⊥\overrightarrow{b}$,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,∠A=60°,c=$\frac{3}{7}$a.
(1)求sinC的值;
(2)若a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若i为虚数单位,则$\frac{{1+{i^{2017}}}}{{{{(1-i)}^2}}}$的虚部为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=pe-x+x+1(p∈R).
(Ⅰ)当实数p=e时,求曲线y=f(x)在点x=1处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当p=1时,若直线y=mx+1与曲线y=f(x)没有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于曲线C所在平面内的点O,若存在以O为顶点的角θ,使得θ≥∠AOB对于曲线C上的任意两个不同点A、B恒成立,则称θ为曲线C相对于O的“界角”,并称最小的“界角”为曲线C相对于O的“确界角”,已知曲线M:y=$\left\{\begin{array}{l}{\sqrt{1+9{x}^{2}},x≤0}\\{1+x{e}^{x-1},x>0}\end{array}\right.$,(其中e为自然对数的底数),O为坐标原点,则曲线M相对于O的“确界角”为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.

查看答案和解析>>

同步练习册答案