精英家教网 > 高中数学 > 题目详情
已知椭圆,过点且被点平分的椭圆的弦所在的直线方程是(   )
A.B.C.D.
B

试题分析:设过点且被点平分的椭圆的弦为,设,所以有又因为两点均在椭圆上,所以两式作差得,即弦所在的直线的斜率为,由直线方程的点斜式可得直线方程为,整理得.
点评:只要涉及到弦以及弦的中点问题,首先应该想到用“点差法”.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知椭圆中心在原点,一个焦点为,且长轴长与短轴长的比是
(1)求椭圆的方程;(5分)
(2)是否存在斜率为的直线,使直线与椭圆有公共点,且原点与直线的距离等于4;若存在,求出直线的方程,若不存在,说明理由。(7分)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分9分)已知顶点在原点,焦点在轴上的抛物线过点
(1)求抛物线的标准方程;
(2)过点作直线交抛物线于两点,使得恰好平分线段,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。
(Ⅰ)写出的方程;     (Ⅱ)若,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2px(p>0)上有一点M,它的横坐标是3,它到焦点的距离是5,则抛物线方程为(  A  )
A.y2=8xB.y2=4xC.y2=3xD.y2=2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P是曲线上任意一点,则点P到直线的最小距离是(    )
A.   B.   C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上一点P到两焦点的距离之积为m,则m取最大值时P点坐标是(     )
A.(0,3)或(0,-3)B.
C.(5,0)或(-5,0) D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的虚轴长为4,离心率,分别是它的左、右焦点,若过的直线与双曲线的左支交于A、B两点,且的等差中项,则等于 (  )
A.8
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

短轴长为,离心率为的椭圆的两个焦点分别为F1,F2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为
A.24B.12 C.6D.3

查看答案和解析>>

同步练习册答案