已知函数f(x)=ax3+x2+bx(a、b为常数),g(x)=f(x)+f′(x)是奇函数.
(1)求f(x)的表达式;
(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值、最小值.
科目:高中数学 来源: 题型:
已知函数y=f(x)(x∈R).对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I).y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=
关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值.
(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有( )
A.f(x)≥f(a) B.f(x)≤f(a)
C.f(x)>f(a) D.f(x)<f(a)
查看答案和解析>>
科目:高中数学 来源: 题型:
已知f(x)=
x2-cosx,x∈[-1,1],则导函数f′(x)是( )
A.仅有最小值的奇函数
B.既有最大值,又有最小值的偶函数
C.仅有最大值的偶函数
D.既有最大值,又有最小值的奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)的定义域是[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.
| x | -1 | 0 | 2 | 4 | 5 |
| f(x) | 1 | 2 | 1.5 | 2 | 1 |
![]()
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a最多有4个零点.
其中正确命题的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x),对于任意x∈R恒成立,则( )
A.f(2)>e2·f(0),f(2 010)>e2 010·f(0)
B.f(2)<e2·f(0),f(2 010)>e2 010·f(0)
C.f(2)>e2·f(0),f(2 010)<e2 010·f(0)
D.f(2)<e2·f(0),f(2 010)<e2 010·f(0)
查看答案和解析>>
科目:高中数学 来源: 题型:
若函数f(x),g(x)满足
f(x)·g(x)dx=0,则称f(x),g(x)为区间[-1,1]上的一组正交函数.给出三组函数:
①f(x)=sin
x,g(x)=cos
x;②f(x)=x+1,g(x)=x-1;③f(x)=x,g(x)=x2.
其中为区间[-1,1]上的正交函数的组数是( )
A.0 B.1
C.2 D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com