精英家教网 > 高中数学 > 题目详情
17.已知斜四棱柱ABCD-A1B1C1D1的底面是矩形,侧面CC1D1D垂直底面ABCD,BC=2AB=DC1=2,BD1=2$\sqrt{3}$
(1)求证:平面AB1C1D⊥平面ABCD
(5)点E是棱BC的中点,求二面角A1-AE-D的余弦值.

分析 (Ⅰ)连结CD1,利用线面垂直的性质定理、勾股定理及面面垂直的判定定理即得结论;
(Ⅱ)以D为原点,以DA、DC、DC1所在直线分别为x、y、z轴建立空间坐标系,则所求值转化为平面DAE的法向量与平面A1AE的法向量的夹角的余弦值的绝对值.

解答 (1)证明:连结CD1,设CD1∩DC1=F,则F是CD1、DC1的中点,
∵底面ABCD是矩形,∴BC⊥CD,
又∵平面CC1D1D⊥平面ABCD,∴平面CC1D1D⊥BC,∴BC⊥CD1
∵BC=2,BD1=2$\sqrt{3}$,∴CD1=$2\sqrt{2}$,CF=$\sqrt{2}$,
在△DFC中,DF=$\frac{1}{2}D{C}_{1}$=1,CD=1,
∴CD2+DF2=CF2,∴DF⊥DC,
又BC⊥平面CC1D1D,∴DF⊥BC,
∴DF⊥平面ABCD,DF?平面AB1C1D,
∴平面AB1C1D⊥平面ABCD;
(2)解:由(1)知能以D为原点,以DA、DC、DC1所在直线分别为x、y、z轴建立空间坐标系,
则平面DAE的法向量为$\overrightarrow{n}$=$\overrightarrow{D{C}_{1}}$=(0,0,2),
设平面A1AE的法向量为$\overrightarrow{m}$=(x,y,z),
∵$\overrightarrow{DA}$=(2,0,0),$\overrightarrow{DE}$=(1,1,0),$\overrightarrow{A{A}_{1}}$=$\overrightarrow{D{D}_{1}}$=(0,-1,2),∴$\overrightarrow{AE}$=(-1,1,0),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AE}=0}\\{\overrightarrow{m}•\overrightarrow{A{A}_{1}}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-x+y=0}\\{-y+2z=0}\end{array}\right.$,
令z=1,得$\overrightarrow{m}$=(2,2,-1),
∴$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{2}{\sqrt{4+4+1}×2}$=$\frac{1}{3}$,
即所求二面角的余弦值为$\frac{1}{3}$.

点评 本题考查二面角,空间中面面的位置关系,向量数量积运算,注意解题方法的积累,建立坐标系是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在篮球比赛中,某篮球队队员投进三分球的个数如表所示:
队员i123456
三分球个数aia1a2a3a4a5a6
如图是统计上述6名队员在比赛中投进的三分球总数s的程序
框图,则图中的判断框内应填入的条件是(  )
A.i<6B.i<7C.i<8D.i<9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知n为正偶数,且${({x^2}-\frac{1}{2x})^n}$的展开式中第3项的二项式系数最大,则第3项的系数是$\frac{3}{2}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥S-ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D,E分别是AC,BC的中点,F在SE上,且SF=2FE.
(1)求证:AF⊥平面SBC;
(2)在线段上DE上是否存在点G,使二面角G-AF-E的大小为30°?若存在,求出DG的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,且满足AB∥CD,AD=DC=$\frac{1}{2}$AB,PA⊥平面ABCD.
(Ⅰ)求证:平面PBD⊥平面PAD;
(Ⅱ)若PA=AB,求直线PC与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=${(\frac{1}{2})}^{sin(-x)}$的单调递增区间是[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=xlnx,g(x)=ax3-$\frac{1}{2}$x-$\frac{2}{3e}$,记函数f(x)与g(x)的交点坐标为(x0,f(x0)),若两函数的图象在交点(x0,f(x0))处存在公切线,则实数a的值为(  )
A.$\frac{2}{3e}$B.$\frac{{e}^{2}}{6}$C.$\frac{{e}^{2}}{2}$D.$\frac{3e}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆x2+y2=4被直线$\sqrt{3}x+y-2\sqrt{3}$=0截得的弦长为(  )
A.$2\sqrt{3}$B.$2\sqrt{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图为一个空间几何体的三视图,其主视图与左视图是边长为2的正三角形、俯视图轮廓是正方形,则该几何体的侧面积为8.

查看答案和解析>>

同步练习册答案