精英家教网 > 高中数学 > 题目详情
16.在等差数列{an}中,a4=9,a7=3a2
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{a{{\;}_{n}a}_{n+1}}$}的前n项和Sn

分析 (1)利用等差数列的通项公式即可得出.
(2)利用裂项求和方法即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a4=9,a7=3a2
∴$\left\{\begin{array}{l}{{a}_{1}+3d=9}\\{{a}_{1}+6d=3({a}_{1}+d)}\end{array}\right.$,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
(2)$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}$$(\frac{1}{2n+1}-\frac{1}{2n+3})$.
∴数列{$\frac{1}{a{{\;}_{n}a}_{n+1}}$}的前n项和Sn=$\frac{1}{2}$$[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$
=$\frac{n}{3(2n+3)}$.

点评 本题考查了等差数列的通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=x3-3x在区间[0,2]上有最大值m和最小值n,则m-n等于(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是(  )
A.至少有1个红球,都是红球B.恰有1个红球,恰有1个白球
C.至少有1个红球,都是白球D.恰有1个白球,恰有2个白球

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果实数x,y满足条件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y≤0}\\{x-1≥0}\end{array}\right.$,则z=x+2y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an},an=$\frac{n}{2}$+$\frac{1}{2}$(n∈N*),则数列{an}的前49项和S49=637.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cosx•sin(x-$\frac{π}{6}$).
(1)求f($\frac{2π}{3}$)的值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上,若DE∥平面ACF,DC=CE=$\frac{1}{2}$BC=3,求三棱锥A-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设n>1且为奇数,证明:n|(1+$\frac{1}{2}$+…+$\frac{1}{n-1}$)(n-1)!

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:
 气温(℃) 1714  11-2
 用电量(度) 23 35 39 63
由表中数据得到线性回归方程$\stackrel{∧}{y}$=-2x+a,当气温为-5℃时,预测用电量约为 (  )
A.38度B.50度C.70度D.30度

查看答案和解析>>

同步练习册答案