精英家教网 > 高中数学 > 题目详情
8.如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上,若DE∥平面ACF,DC=CE=$\frac{1}{2}$BC=3,求三棱锥A-BCF的体积.

分析 (1)根据平面ABCD⊥平面BCE,利用面面垂直的性质可得AB⊥平面BCE,从而可得CE⊥AB,由CE⊥BE,根据线面垂直的判定可得CE⊥平面ABE,从而可得平面AEC⊥平面ABE;
(2)连接BD交AC于点O,连接OF.根据DE∥平面ACF,可得DE∥OF,根据O为BD中点,可得F为BE中点,由已知求出底面三角形BCF的面积,代入体积公式得答案.

解答 (1)证明:∵ABCD为矩形,∴AB⊥BC.
∵平面ABCD⊥平面BCE,平面ABCD∩平面BCE=BC,AB?平面ABCD,
∴AB⊥平面BCE.
∵CE?平面BCE,∴CE⊥AB.
∵CE⊥BE,AB?平面ABE,BE?平面ABE,AB∩BE=B,
∴CE⊥平面ABE.
∵CE?平面AEC,∴平面AEC⊥平面ABE.
(2)解:连接BD交AC于点O,连接OF.
∵DE∥平面ACF,DE?平面BDE,平面ACF∩平面BDE=OF,
∴DE∥OF.
又∵矩形ABCD中,O为BD中点,
∴F为BE中点,即BF=FE.
在Rt△BEC中,∵BC=6,EC=3,∴BE=$\sqrt{{6}^{2}-{3}^{2}}=3\sqrt{3}$.
∴${S}_{△AFC}=\frac{1}{2}×\frac{1}{2}×3\sqrt{3}×3=\frac{9\sqrt{3}}{4}$.
又AB=DC=3.
∴${V}_{A-BCF}=\frac{1}{3}×\frac{9\sqrt{3}}{4}×3=\frac{9\sqrt{3}}{4}$.

点评 本题考查面面垂直的判定,考查了棱锥体积的求法,考查空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.现抛掷两枚骰子,记事件A为“朝上的2个数之和为偶数”,事件B为“朝上的2个数均为偶数”,则P(B|A)=(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{x+2y-4≥0}\end{array}\right.$,则z=x+3y的最大值为10..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在等差数列{an}中,a4=9,a7=3a2
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{a{{\;}_{n}a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线$\frac{x}{3}$-$\frac{y}{4}$=1在x轴上的截距是(  )
A.-3B.3C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是偶函数又在区间 (0,+∞)上单调递减的是(  )
A.y=$\frac{1}{x}$B.y=e-xC.y=-x2+1D.y═lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC 中,a,b,c分别是内角A,B,C的对边,且acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3b}{2}$.
(Ⅰ)求证:a,b,c 成等差数列;
(Ⅱ)若B=$\frac{π}{3}$,b=4,求△ABC 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知{an}为等比数列,a4+a7=2,a2a9=-8,则a1+a10=(  )
A.7B.5C.-7D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,某人为测量河对岸塔AB的高,先在塔底B的正东方向上的河岸上选一点C,在点C处测得点A的仰角为45°,并在点C北偏东15°方向的河岸上选定一点D,测得CD的距离为20米,∠BDC=30°,则塔AB的高是(  )
A.10米B.$10\sqrt{2}$米C.$10\sqrt{3}$米D.$20\sqrt{3}$米

查看答案和解析>>

同步练习册答案