分析 利用数学归纳法即可证明.注意变形利用假设条件.
解答 证明:利用数学归纳法证明:
(1)当n=3时,$(1+\frac{1}{2})×2!$=3,可以被3整除,因此成立.
(2)假设当n=2k-1(k∈N*,k≥2)时,(1+$\frac{1}{2}$+…+$\frac{1}{2k-2}$)(2k-1)!=(2k-1)•m(m为正整数).
则n=2k+1时,(1+$\frac{1}{2}$+…+$\frac{1}{2k-2}$+$\frac{1}{2k-1}$+$\frac{1}{2k}$)(2k+2)!
=(1+$\frac{1}{2}$+…+$\frac{1}{2k-2}$)(2k+2)!+($\frac{1}{2k-1}$+$\frac{1}{2k}$)(2k+2)!=
=(2k-1)•m×2k(2k+1)(2k+2)+(2k-2)!(2k+1)(2k+2)
=(2k+1)•N,N=(2k-1)•m×2k×(2k+2)+(2k-2)!×(2k+2)为整数.
上式能够被奇数2k+1整除,因此n=2k+1时假设成立.
综上可得:命题成立.
点评 本题考查了数学归纳法、阶乘、整除的理论,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | p∨q | B. | p∧q | C. | (¬p)∨q | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{1}{x}$ | B. | y=e-x | C. | y=-x2+1 | D. | y═lg|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移$\frac{2π}{3}$个单位长度,得到曲线C2 | |
| B. | 把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移$\frac{π}{3}$个单位长度,得到曲线C2 | |
| C. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移$\frac{2π}{3}$个单位长度,得到曲线C2 | |
| D. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个$\frac{π}{3}$单位长度,得到曲线C2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com