精英家教网 > 高中数学 > 题目详情
长方形ABCD,AB=2
2
,BC=1,以AB的中点O为原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程:
(2)过点p(0,2)的直线m与(1)中椭圆只有一个公共点,求直线m的方程:
(3)过点p(0,2)的直线l交(1)中椭圆与M,N两点,是否存在直线l,使得以弦MN为直径的圆恰好过原点?若存在,直线l的方程;若不存在,说明理由.
(1)由题意可得点A,B,C的坐标分别为(-
2
,0),(
2
,0),(
2
,1).
设椭圆的标准方程是
x2
a2
+
y2
b2
=1(a>b>0).
则2a=AC+BC,
即2a=
(2
2
)2+1
+1=4>2
2
,所以a=2.
所以b2=a2-c2=4-2=2.
所以椭圆的标准方程是
x2
4
+
y2
2
=1.
(2)设直线m的方程为y=kx+2,
y=kx+2
x2
4
+
y2
2
=1
,得(2k2+1)x2+8kx+4=0,
∵直线m与椭圆只有一个公共点,
∴△=64k2-16(k2+1)=0,解得k=±
3
3

∴直线m的方程为y=
3
3
x,或y=-
3
3
x.
(3)由题意知,直线l的斜率存在,可设直线l的方程为y=kx+2.
y=kx+2
x2+2y2=4
,得(1+2k2)x2+8kx+4=0.
因为M,N在椭圆上,
所以△=64k2-16(1+2k2)>0.
设M,N两点坐标分别为(x1,y1),(x2,y2).
则x1+x2=-
8k
1+2k2
,x1x2=
4
1+2k2

若以MN为直径的圆恰好过原点,则
OM
ON

所以x1x2+y1y2=0,
所以,x1x2+(kx1+2)(kx2+2)=0,
即(1+k2)x1x2+2k(x1+x2)+4=0,
所以,
4(1+k2)
1+2k2
-
16k2
1+2k2
+4=0,即
8-4k2
1+2k2
=0,
得k2=2,k=±
2

经验证,此时△=48>0.
所以直线l的方程为y=
2
x+2,或y=-
2
x+2.
即所求直线存在,其方程为y=
2
x+2,或y=-
2
x+2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知椭圆C的焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率。(1)求椭圆的标准方程;(2)过椭圆C的右焦点作直线交椭圆C于A、B两点,交y轴于M,若为定值吗?证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知不过坐标原点O的直线L与抛物线y2=2x相交于A、B两点,且OA⊥OB,OE⊥AB于E.
①求证:直线L过定点;
②求点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
2
+y2=1,其右焦点为F,直线l经过点F与椭圆交于A,B
两点,且|AB|=
4
2
3

(1)求直线l的方程;
(2)求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆C:
x2
9
+
y2
4
=1
,斜率为k的直线l与椭圆相交于点M,N,点A是线段MN的中点,直线OA(O为坐标原点)的斜率是k′,那么kk′=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,P是抛物线C:x2=2y上一点,F为抛物线的焦点,直线l过点P且与抛物线交于另一点Q,已知P(x1,y1),Q(x2,y2).
(1)若l经过点F,求弦长|PQ|的最小值;
(2)设直线l:y=kx+b(k≠0,b≠0)与x轴交于点S,与y轴交于点T
①求证:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
1
2
,一条准线方程为x=4.
(1)求椭圆E的标准方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线y2=2px(p为常数)的准线与X轴交于点K,过K的直线l与抛物线交于A、B两点,则
OA
OB
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆
x2
4
+y2=1
共焦点,它们的离心率之和为
3
3
2

(1)求椭圆与双曲线的离心率e1、e2
(2)求双曲线的标准方程与渐近线方程;
(3)已知直线l:y=
1
2
x+m
与椭圆有两个交点,求m的取值范围.

查看答案和解析>>

同步练习册答案