精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3-
3
2
x2+b,(x∈R).
(1)若曲线y=f(x)在点(2,f(2))处的切线方程为y=6x-8,求a的值;
(2)若a>0,b=2,当x∈[-1,1]时,求f(x)的最小值.
(1)f′(x)=3ax2-3x,f′(2)=6得a=1
由切线方程y=6x-8得f(2)=4;
又f(2)=8a-6+b=b+2,所以b=2
所以a=1,b=2
(2)f(x)=ax3-
3
2
x2+2
f′(x)=3ax2-3x=3x(ax-1).令f′(x)=0,解得x=0或x=
1
a

以下分两种情况讨论:
①若
1
a
>1即0<a<1,当x变化时,f’(x),f(x)的变化情况如下表:
X (-1,0) 0 (0,1)
f′(x) + 0 -
f(x) 极大值
f(-1)=-a-
3
2
+2,f(1)=a-
3
2
+2
所以  f(x)min=f(-1)=
1
2
-a
②若0<
1
a
<1即a<1.当x变化时,f′(x),f(x)的变化情况如下表:
X (-1,0) 0 (0,
1
a
1
a
1
a
,1)
f’(x) + 0 - 0 +
f(x) 极大值 极小值
f(-1)=
1
2
-a,f(
1
a
)=2-
1
2a 2

而f(
1
a
)-f(-1)=2-
1
2a 2
-(
1
2
-a)=
3
2
+a-
1
2a 2
>0
所以f(x)min=f(-1)=
1
2
-a
综合①和②得:f(x)min=f(-1)=
1
2
-a.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案