| A. | (-$\sqrt{7}$,-1) | B. | (-$\sqrt{7}$,-1] | C. | (-$\sqrt{7}$,-2) | D. | (-$\sqrt{7}$,-2] |
分析 因为给的是开区间,最大值一定是在该极大值点处取得,因此对原函数求导、求极大值点,求出函数极大值时的x值,然后让极大值点落在区间(a,6-a2)内,依此构造不等式.即可求解实数a的值.
解答 解:由题意f(x)=x3-3x,
所以f′(x)=3x2-3=3(x+1)(x-1),
当x<-1或x>1时,f′(x)>0;
当-1<x<1时,f′(x)<0,故x=-1是函数f(x)的极大值点,f(-1)=-1+3=2,x3-3x=2,解得x=2,
所以由题意应有:$\left\{\begin{array}{l}{a<6-{a}^{2}}\\{a<-1}\\{6-{a}^{2}>-1}\\{6-{a}^{2}≤2}\end{array}\right.$,
解得-$\sqrt{7}$<a≤-2.
故选:D.
点评 本题考查了三次函数在指定区间上的最值问题,一定要辨析清楚是开区间还是闭区间,从而确定最值点与极值点的关系;本题另一个易错点为易忽视定义域中a<6-a2的条件.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0)∪(0,$\frac{1}{7}$] | B. | [-1,0)∪(0,$\frac{1}{7}$] | C. | [-1,0)∪(0,$\frac{1}{7}$) | D. | [-1,$\frac{1}{7}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$] | B. | (0,$\frac{1}{{e}^{2}}$] | C. | [$\frac{1}{{e}^{2}}$,$\frac{1}{e}$] | D. | [$\frac{1}{e}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sinA | B. | cosB | C. | tanA | D. | cotA |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com