精英家教网 > 高中数学 > 题目详情
3.若圆锥的侧面积与其底面积之比为2,则该圆锥的轴与母线的夹角大小为30°.

分析 根据圆锥的底面积公式和侧面积公式,结合已知可得l=2R,进而解三角形得到答案.

解答 解:设圆锥的底面半径为R,母线长为l,则:
其底面积:S底面积=πR2
其侧面积:S侧面积=$\frac{1}{2}$2πRl=πRl,
∵圆锥的侧面积是其底面积的2倍,
∴l=2R,
故该圆锥的母线与底面所成的角θ有cosθ=$\frac{1}{2}$,
∴θ=60°,
∴该圆锥的轴与母线的夹角大小为30°
故答案为:30°.

点评 本题考查的知识点是旋转体,熟练掌握圆锥的底面积公式和侧面积公式,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.点O是平行四边形ABCD的中点,E,F分别在边CD,AB上,且$\frac{CE}{ED}$=$\frac{AF}{FB}$=$\frac{1}{2}$.求证:点E,O,F在同一直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,过B、C分别作∠BAC的平分线的垂线,E、F为垂足,AD⊥BC于D、M为BC中点,求证:M、E、D、F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=x3-3x在(a,6-a2)上有最大值,则实数a的取值范围是(  )
A.(-$\sqrt{7}$,-1)B.(-$\sqrt{7}$,-1]C.(-$\sqrt{7}$,-2)D.(-$\sqrt{7}$,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥面ABCD,PA=AB,E为PD的中点.
(1)求证:直线PD⊥平面AEB;
(2)若直线PC交平面AEB于点F,求直线BF与平面PCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合P={x|x=k+$\frac{1}{2}$,k∈z},Q={x|x=$\frac{k}{2}$,k∈z},记原命题:“x∈P,则x∈Q”.那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$的最小值以及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一矩形的一边在x轴上,另两个顶点在函数y=$\frac{x}{{1+{x^2}}}$(x>0)的图象上,如图,则此矩形绕x轴旋转而成的几何体的体积的最大值是(  )
A.πB.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p≠0)的焦点F在直线2x+y-2=0上.
(1)求抛物线C的方程;
(2)已知点P是抛物线C上异于坐标原点O的任意一点,抛物线在点P处的切线分别与x轴、y轴交于点B,E,设$\overrightarrow{PE}$=λ$\overrightarrow{PB}$,求证:λ为定值;
(3)在(2)的条件下,直线PF与抛物线C交于另一点A,请问:△PAB的面积是否存在最小值?若存在,请求出最小值及此时点P的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案