精英家教网 > 高中数学 > 题目详情
16.若函数y=f(x)(x∈R)满足f(x+1)=-f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}lgx({x>0})\\-\frac{1}{x}({x<0})\end{array}$则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为8.

分析 判断出f(x)的周期为2,转化为函数f(x)与g(x)函数图象的交点个数,画出图象即可判断.

解答 解:∵数y=f(x)(x∈R)满足f(x+1)=-f(x),
∴f(x+2)=f(x),
即f(x)的周期为2,
∵h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为,
∴函数f(x)与g(x)函数图象的交点个数,

根据函数图象判断:f(x)与g(x)函数图象的交点个数8,
故答案为:8

点评 本题考查了函数的零点,转化为两个函数图象的交点问题求解,考查了学生的画图能力,运用图形判断问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在高中数学课本中我们见过许多的“信息技术应用”,我们可以利用几何画板软件的拖动、动画及计算等功能来研究许多数学问题,比如:在平面内做一条线段KL,以定点A为圆心,以|KL|为半径作一圆,在圆内取一定点F,在圆上取动点B,作线段BF的中垂线与圆A的半径AB交于点P.当点B在圆上运动时,就会发现点P的运动轨迹.
(Ⅰ)你能猜出点P的轨迹是什么曲线吗?请说明理由;若|KL|=6,|AF|=4,以线段AF的中点O为原点,以直线AF为x轴,建立平面直角坐标系,试求点P的轨迹方程;
(Ⅱ)在(Ⅰ)的条件下,过点A作直线l与点P的轨迹交于两点M、N,试求线段MN的中点Q的轨迹方程;
(Ⅲ)拖动改变线段KL的长度,会发现点P的轨迹C的形状在发生变化,请问在保持(Ⅰ)中轨迹C类型不变的前提下,当C的离心率e在什么范围变化时,C上总存在点R,使得AR⊥FR?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A,B,P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的不同三点,且AB连线经过坐标原点,若直线PA,PB的斜率乘积${k_{PA}}•{k_{PB}}=\frac{2}{3}$,则该双曲线的离心率e=(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\frac{{\sqrt{10}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为“凸函数”.已知f(x)=$\frac{1}{12}$x4-$\frac{1}{6}$mx3-$\frac{3}{2}$x2,若对任意的实数m满足|m|≤2时,函数f(x)在区间(a,b)上为“凸函数”,则b-a的最大值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设矩阵M=$(\begin{array}{l}{1}&{a}\\{b}&{1}\end{array})$.
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C′:x2-2y2=1,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.有两个每项都是正数的数列{an}、{bn},a1=1,b1=2,a2=3,且bn是an与an+1的等差中项,an+1是bn与bn+1的等比中项,求$\frac{{a}_{n}}{{b}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且x∈[0,2]时,f(x)=log2(x+1),给出下列结论:
①f(3)=1;②函数f(x)在[-6,-2]上是增函数;③函数f(x)的图象关于直线x=1对称;④若m∈(0,1),则关于x的方程f(x)-m=0在[-8,16]上的所有根之和为12.
则其中正确的命题为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在△ABC中,BC边上的中线为AD.
(1)若AD=BD=2,AB=3,求ABC的面积;
(2)若∠ABC=30°,∠ACB=45°,求tan∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知等差数列{an)的前n项和为Sn=-n2+(10+k)n+(k-1),则实数k=1,an=-2n+12.

查看答案和解析>>

同步练习册答案