精英家教网 > 高中数学 > 题目详情
8.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且x∈[0,2]时,f(x)=log2(x+1),给出下列结论:
①f(3)=1;②函数f(x)在[-6,-2]上是增函数;③函数f(x)的图象关于直线x=1对称;④若m∈(0,1),则关于x的方程f(x)-m=0在[-8,16]上的所有根之和为12.
则其中正确的命题为①④.

分析 对于①,利用赋值法,取x=1,得f(3)=-f(1)=1即可判断;
对于③由f(x-4)=f(-x)得f(x-2)=f(-x-2),即f(x)关于直线x=-2对称,
对于②结合奇函数在对称区间上单调性相同,可得f(x)在[-2,2]上为增函数,利用函数f(x)关于直线x=-2对称,可得函数f(x)在[-6,-2]上是减函数;
对于④若m∈(0,1),则关于x的方程f(x)-m=0在[-8,8]上有4个根,其中两根的和为-6×2=-12,另两根的和为2×2=4,故可得结论.

解答 解:取x=1,得f(1-4)=-f(1)=-log2(1+1)=-1,所以f(3)=-f(1)=1,故①的结论正确;
∵f(x-4)=-f(x),则f(x+4)=-f(x),即f(x-4)=f(x+4)
定义在R上的奇函数f(x)满足f(x-4)=-f(x),则f(x-4)=f(-x),
∴f(x-2)=f(-x-2),
∴函数f(x)关于直线x=-2对称,故③的结论不正确;
又∵奇函数f(x),x∈[0,2]时,f(x)=log2(x+1)为增函数,
∴x∈[-2,2]时,函数为单调增函数,
∵函数f(x)关于直线x=-2对称,
∴函数f(x)在[-6,-2]上是减函数,故②的结论不正确;
若m∈(0,1),则关于x的方程f(x)-m=0在[-8,8]上有4个根,其中两根的和为-6×2=-12,另两根的和为2×2=4,所以所有根之和为-8.故④正确
故答案为:①④.

点评 本题考查函数的性质,考查函数单调性的应用、函数奇偶性的应用、对称性等基础知识,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.集合A={-1,0,1},B={y|y=x2,x∈R},则A∩B=(  )
A.{1}B.{0}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,矩形ABCD中,AB=2,BC=4,以矩形ABCD的中心为原点,过矩形ABCD的中心平行于BC的直线为x轴,建立直角坐标系,
(1)求到直线AD、BC的距离之积为1的动点P的轨迹;
(2)若动点P到线段CD中点N的距离比到直线AB的距离大4,求动点P的轨迹方程,作出动点P的大致轨迹;
(3)若动点P到直线AD、BC的距离之积是到直线AB、CD的距离之积的a(a>0)倍,求动点P的轨迹方程,并指出是怎样的曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数y=f(x)(x∈R)满足f(x+1)=-f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}lgx({x>0})\\-\frac{1}{x}({x<0})\end{array}$则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,四个顶点所围成菱形的面积为8$\sqrt{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线L:y=kx+m与椭圆C交于两个不同点A(x1,x2)和B(x2,y2),O为坐标原点,且kOA•kOB=-$\frac{1}{2}$,求y1,y2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l:y=ax+1-a(a∈R).若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线:
①y=-2|x-1|②y=x2③(x-1)2+(y-1)2④x2+3y2=4
其中,可以被称为直线l的“绝对曲线”的是②③④.(请将符合题意的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某三棱锥的三视图如图所示,图中网格小正方形的边长为1,则该三棱锥的体积为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数y=|x+1|+|x-2|的最小值为M;
(Ⅰ)求实数M的值;
(Ⅱ)若不等式$\sqrt{a-x}+\sqrt{4+2x}$≤M,(其中a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}1,x为有理数\\ 0,x为无理数\end{array}$,给出下列命题:
①函数f(x)为偶函数;
②函数f(x)是周期函数; 
③存在xi(i=1,2,3),使得(xi,f(xi))为顶点的三角形是等边三角形;
④存在xi(i=1,2,3),使得(xi,f(xi))为顶点的三角形是等腰直角三角形.
其中的真命题是①②③(填上你认为正确的所有命题的序号)

查看答案和解析>>

同步练习册答案