分析 首先利用换元法和三角函数关系式的恒等变换,进一步利用$\left|\frac{2m-1}{\sqrt{{m}^{2}+1}}\right|≤1$确定m的范围,最后利用函数f(x)=-$\sqrt{\frac{2}{1+{m}^{2}}}$的单调性求出结果.
解答 解:f(x)=$\frac{cosx-2}{\sqrt{3-2cosx+sinx}}$
=-$\frac{2-cosx}{\sqrt{\frac{1}{2}(6-4cosx+2sinx)}}$
=-$\sqrt{\frac{(2-cosx)^{2}}{\frac{1}{2}(4-4cosx+{cos}^{2}x)+(1+2sinx+{sin}^{2}x)}}$
=-$\sqrt{\frac{2}{1+(\frac{1+sinx}{2-cosx})^{2}}}$
设$\frac{1+sinx}{2-cosx}=m$,则:sinx+mcosx=2m-1,
所以:sin(x+φ)=$\frac{2m-1}{\sqrt{{m}^{2}+1}}$.
由于:$\left|\frac{2m-1}{\sqrt{{m}^{2}+1}}\right|≤1$
解得:$0≤m≤\frac{3}{4}$,
由于f(x)=-$\sqrt{\frac{2}{1+{m}^{2}}}$在定义域内为单调递增函数.
所以函数的值域为:$[-\sqrt{2},-\frac{3\sqrt{2}}{5}]$.
故答案为:$[-\sqrt{2},-\frac{3\sqrt{2}}{5}]$
点评 本题考查的知识要点:三角函数关系式的恒等变形,换元的应用,主要考察学生运算能力和恒等变换能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>c>b | B. | b>a>c | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com