精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=ex-e-x-2x(e≈2.71828),x∈R.
(1)求证:函数f(x)在(-∞,+∞)上是增函数;
(2)求证:对于任意的正实数a,b,都有f($\frac{4a}{1+{b}^{2}}$)≤f($\frac{1+{a}^{2}}{b}$);
(3)若存在x0∈R,使f(f(x0))=x0,求证:f(x0)=x0

分析 (1)利用导数f′(x)≥0判断函数f(x)是单调增函数;
(2)根据f(x)的单调性,利用分析法即可证明$f(\frac{4a}{{1+{b^2}}})≤f(\frac{{1+{a^2}}}{b})$成立;
(3)法1:利用反证法,假设f(x0)≠x0,从假设出发,推出矛盾,从而说明假设不成立,即结论成立;
法2:根据题意,构造函数,利用函数的单调性,即可证明结论成立.

解答 解:(1)因为$f'(x)={{e}^x}+{{e}^{-x}}-2≥2\sqrt{{{e}^x}•{{e}^{-x}}}-2=0$,当且仅当x=0时等号成立,
所以函数f(x)在(-∞,+∞)上是单调增函数;…(4分)
(2)因为f(x)在(-∞,+∞)上是单调增函数,
要证$f(\frac{4a}{{1+{b^2}}})≤f(\frac{{1+{a^2}}}{b})$,只要证$\frac{4a}{{1+{b^2}}}≤\frac{{1+{a^2}}}{b}$,
因为a,b是正实数,所以只要证4ab≤(1+a2)(1+b2),
即证4ab≤1+a2+b2+a2b2,只要证(a-b)2+(ab-1)2≥0,显然成立,
所以$f(\frac{4a}{{1+{b^2}}})≤f(\frac{{1+{a^2}}}{b})$;        …(10分)
(3)法1:假设f(x0)≠x0,则f(x0)>x0或f(x0)<x0
若f(x0)>x0,则由(1)知f(f(x0))>f(x0)>x0,与f(f(x0))=x0矛盾;
若f(x0)<x0,则由(1)知f(f(x0))<f(x0)<x0,与f(f(x0))=x0矛盾;
又f(x0)=x0,则f(f(x0))=f(x0)=x0
综上所述,f(x0)=x0;               …(16分)
法2:由$f(f({x_0}))={{e}^{f({x_0})}}-{{e}^{-f({x_0})}}-2{x_0}={x_0}$,
设f(x0)=t,则f(t)=x0
故${{e}^{x_0}}-{{e}^{-{x_0}}}-2{x_0}=t$,et-e-t-2t=x0
两式相减得${{e}^{x_0}}-{{e}^{-{x_0}}}-{x_0}={{e}^t}-{{e}^{-t}}-t$,
设h(x)=ex-e-x-x,则h'(x)=ex+e-x-1>0,
故h(x)在R上单调递增,
故由h(x0)=h(t),得x0=t,
即f(x0)=x0.…(16分)

点评 本题考查了利用导数研究函数的单调性问题,也考查了函数的性质与应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.2,4,4,6,6,6,8,8,8,8这10个数的标准差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在(1+x+x2)(1-x)10展开式中,x4的系数为(  )
A.C${\;}_{9}^{4}$+C${\;}_{9}^{1}$B.C${\;}_{9}^{4}$-C${\;}_{9}^{1}$
C.C${\;}_{10}^{4}$+C${\;}_{10}^{3}$+C${\;}_{10}^{2}$D.C${\;}_{10}^{4}$-C${\;}_{10}^{3}$-C${\;}_{10}^{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式$\frac{x+1}{x-3}$≥0的解集是(  )
A.(-∞,-1]∪(3,+∞)B.[-1,3)C.(-∞,-1]∪[3,+∞)D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若点P是曲线y=x2-lnx上一点,且在点P处的切线与直线y=x-2平行,
(1)求点P的坐标;  
(2)求函数y=x2-lnx的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求经过点(-2,-3),并在x轴上的截距为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在边长为1的等边△ABC的BC边上任取一点D,使$\frac{1}{2}$≤$\overrightarrow{AB}•\overrightarrow{AD}$≤$\frac{2}{3}$的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=2x-1(x∈R),规定:给定一个实数x0,第一次赋值x1=f(x0),若x1≤257,则继续第二次赋值x2=f(x1),若x2≤257,则继续第三次赋值x3=f(x2),…,以此类推,若xn-1≤257,则xn=f(xn-1),否则停止赋值,已知第8次赋值后该过程停止,则x0的取值范围是(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)求不等式|2x-4|+|x+1|≥5解集;
(Ⅱ)已知a,b为正数,若直线(a-1)x+2y+6=0与直线2x+by-5=0互相垂直,求证:$\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}$≥8.

查看答案和解析>>

同步练习册答案