| A. | 4 | B. | 2 | C. | $\sqrt{2}$ | D. | 1 |
分析 (a+b+c)(b+c-a)=3bc,(b+c)2-a2=3bc,化为:b2+c2-a2=bc.再利用余弦定理可得A=$\frac{π}{3}$.sinA=2sinBcosC,利用正弦定理与余弦定理可得:b=c.因此△ABC是等边三角形.即可得出.
解答 解:∵(a+b+c)(b+c-a)=3bc,∴(b+c)2-a2=3bc,化为:b2+c2-a2=bc.![]()
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
A∈(0,π),∴A=$\frac{π}{3}$.
∵sinA=2sinBcosC,∴a=2b×$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,化为:b=c.
∴△ABC是等边三角形.
那么△ABC的外接圆面积与内切圆面积的比值=$\frac{π×{2}^{2}}{π×{1}^{2}}$=4.
故选:A.
点评 本题考查了正弦定理余弦定理、等边三角形的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | ±4 | C. | 4$\sqrt{3}$ | D. | ±4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{3}$,$\frac{\sqrt{3}}{3}$] | B. | [$\frac{1}{3}$,+∞) | C. | [$\frac{\sqrt{3}}{3}$,+∞) | D. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,m∥n,则n∥α | B. | 若m⊥α,n⊥α,则m∥n | C. | 若m∥α,m⊥n,则n∥α | D. | 若m⊥α,n⊥m,则n∥α |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p的逆命题 | B. | p的否命题 | C. | p的逆否命题 | D. | p的否定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com