【题目】已知函数
,给出下列四个结论:
①函数
的最小正周期是![]()
②函数
在区间
上是减函数
③函数
的图像关于点
对称
④函数
的图像可由函数
的图像向左平移
个单位得到
其中正确结论的个数是( )
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为
,第二次出现的点数为
,试就方程组
解答下列各题:
(1)求方程组只有一个解的概率;
(2)求方程组只有正数解的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数
,已知复数
,
和
,其中
均为实数,
为虚数单位,且对于任意复数
,有
,将
作为点
的坐标,
作为点
的坐标,通过关系式
,可以看作是坐标平面上点的一个变换,它将平面上的点
变到这个平面上的点
.
(1)分别写出
和
用
表示的关系式;
(2)设
,当点
在圆
上移动时,求证:点
经该变换后得到的点
落在一个圆上,并求出该圆的方程;
(3)求证:对于任意的常数
,总存在曲线
,使得当点
在
上移动时,点
经这个变换后得到的点
的轨迹是二次函数
的图像,并写出对于正常数
,满足条件的曲线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点F为椭圆C:
(a>b>0)的左焦点,点A,B分别为椭圆C的右顶点和上顶点,点P(
,
)在椭圆C上,且满足OP∥AB.
![]()
(1)求椭圆C的方程;
(2)若过点F的直线l交椭圆C于D,E两点(点D位于x轴上方),直线AD和AE的斜率分别为
和
,且满足
﹣
=﹣2,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是( )
![]()
A. 这15天日平均温度的极差为![]()
B. 连续三天日平均温度的方差最大的是7日,8日,9日三天
C. 由折线图能预测16日温度要低于![]()
D. 由折线图能预测本月温度小于
的天数少于温度大于
的天数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率
,且过焦点的最短弦长为3.
(1)求椭圆
的标准方程;
(2)设
分别是椭圆
的左、右焦点,过点
的直线
与曲线
交于不同的两点
、
,求
的内切圆半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),以直角坐标系的原点
为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
的极坐标方程;
(2)设曲线
的极坐标方程为
,曲线
的极坐标方程为
,求三条曲线
,
,
所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,以
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,
.
(1)当
时,判断曲线
与曲线
的位置关系;
(2)当曲线
上有且只有一点到曲线
的距离等于
时,求曲线
上到曲线
距离为
的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,
平面
,
,
是线段
的中垂线,
,
为线段
上的点.
![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)若
为
的中点,求异面直线
与
所成角的正切值;
(Ⅲ)求直线
与平面
所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com