精英家教网 > 高中数学 > 题目详情
直线x+
3
y-m=0与圆x2+y2=1在第一象限内有两个不同的交点,则m的取值范围是(  )
A、(1,2)
B、(
3
,3)
C、(1,
3
D、(
3
,2)
考点:直线与圆相交的性质
专题:直线与圆
分析:要使直线和圆在第一象限内有两个交点,首先考虑直线和圆相切的情况,作出图象,利用数形结合思想能求出
m的取值范围.
解答: 解:要使直线和圆在第一象限内有两个交点,
首先考虑直线和圆相切的情况,
由圆心到直线的距离等于半径可得
|m|
2
=1

即m=±2,根据实际图形取m=2,
当直线过点(0,1)时,m=
3
.根据图形可知
3
<m<2.
故选:D.
点评:本题考查实数m的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用系统抽样法从已编好号码的500辆车中随机抽出5辆进行试验,则可能选取的车的编号是(  )
A、50、100、150、200、250
B、13、113、213、313、413
C、110、120、130、140、150
D、12、40、80、160、320

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=|x-1|,f2(x)=
1
3
x+1,g(x)=
f1(x)+f2(x)
2
+
|f1(x)-f2(x)|
2
,若a,b∈[-1,5],且当x1,x2∈[a,b]时,
g(x1)-g(x2)
x1-x2
>0恒成立,则b-a的最大值为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平面α⊥平面β,α∩β=AB,C∈β,D∈β,DA⊥AB,CB⊥AB,BC=8,AB=6,AD=4,平面α有一动点P使得∠APD=∠BPC,则△PAB的面积最大值是(  )
A、24B、32C、12D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的公比为正数,且a3•a9=4a52,a2=6,则a1=(  )
A、1
B、
2
C、3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,对x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实根,则a的取值范围是(  )
A、(1,2)
B、(2,+∞)
C、(1,
34
D、(
34
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x-1|
,若关于x的方程[f(x)]2+bf(x)+2=0有四个不同的正根,则b的取值范围是(  )
A、(-∞,-2
2
B、(-3,-2
2
C、(-3,2
2
D、(-2
2
,2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设S={1,2,3,4},n项的数列a1,a2,…an有下列性质:对于S的任何一个非空子集B,在该数列中有相邻的card(B)项恰好组成集合B,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
b
与向量
a
=(2,-1,2)共线,且满足
a
b
=18,(k
a
+
b
)⊥(k
a
-
b
),求向量
b
及k的值.

查看答案和解析>>

同步练习册答案