精英家教网 > 高中数学 > 题目详情
1.圆x2+y2-2x-4y=0的圆心C的坐标是(1,2),设直线l:y=k(x+2)与圆C交于A,B两点,若|AB|=2,则k=0或$\frac{12}{5}$.

分析 圆的方程化为标准方程,可得圆心C的坐标,利用|AB|=2,可得圆心到直线的距离d=$\sqrt{5-1}$=2,从而$\frac{|3k-2|}{\sqrt{{k}^{2}+1}}$=2,即可得出结论.

解答 解:圆x2+y2-2x-4y=0的标准方程为(x-1)2+(y-2)2=5,圆心C的坐标是(1,2),
∵|AB|=2,∴圆心到直线的距离d=$\sqrt{5-1}$=2,
∴$\frac{|3k-2|}{\sqrt{{k}^{2}+1}}$=2,
∴k=0或$\frac{12}{5}$.
故答案为(1,2),0或$\frac{12}{5}$.

点评 本题考查圆的方程,考查直线与圆的位置关系,考查弦长的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ln x-$\frac{a}{x}$,e为自然对数的底数.
(1)若a>0,试判断f(x)的单调性;
(2)若f(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lg$\frac{x+5}{x-5}$.
①求f(x)的定义域;  
②判断f(x)的奇偶性; 
③求f-1(x);
④求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为$\frac{4}{3}$,则球O的表面积为(  )
A.$\frac{32}{3}π$B.16πC.144πD.288π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)={cos^2}(ωx+φ)-\frac{1}{2}$,$(ω>0,0<φ<\frac{π}{2})$.若f(x)的最小正周期为π,且$f(\frac{π}{8})=\frac{1}{4}$.
(Ⅰ)求ω和φ的值;
(Ⅱ)求函数f(x)在区间$[{\frac{π}{24},\frac{13π}{24}}]$上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P是椭圆$\frac{{x}^{2}}{169}$+$\frac{{y}^{2}}{25}$=1上一点,F1、F2是椭圆的焦点,若|PF1|等于6,则|PF2|等于(  )
A.13B.21C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线C:y2=2px(p>0)的准线是直线l:x=-2,焦点是F.
(1)求抛物线C的方程.
(2)若l与x轴交于点A,点M在抛物线C上,且M到焦点F的距离为8,求△AFM的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=-x3+3x+m恰有两个零点,则实数m=(  )
A.-2或2B.-1或1C.-1或-2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ex(x2-x+1)
(1)求f(x)的单调区间;
(2)若当x∈[-1,1]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案