精英家教网 > 高中数学 > 题目详情
10.函数f(x)=cos(x+$\frac{2π}{5}$)+2sin$\frac{π}{5}$sin(x+$\frac{π}{5}$)的最大值是(  )
A.1B.sin$\frac{π}{5}$C.2sin$\frac{π}{5}$D.$\sqrt{5}$

分析 由三角函数公式整体可得f(x)=cosx,可得函数的最大值为1.

解答 解:由三角函数公式可得f(x)=cos(x+$\frac{2π}{5}$)+2sin$\frac{π}{5}$sin(x+$\frac{π}{5}$)
=cos[(x+$\frac{π}{5}$)+$\frac{π}{5}$]+2sin$\frac{π}{5}$sin(x+$\frac{π}{5}$)
=cos(x+$\frac{π}{5}$)cos$\frac{π}{5}$-sin(x+$\frac{π}{5}$)sin$\frac{π}{5}$+2sin$\frac{π}{5}$sin(x+$\frac{π}{5}$)
=cos(x+$\frac{π}{5}$)cos$\frac{π}{5}$+sin(x+$\frac{π}{5}$)sin$\frac{π}{5}$
=cos[(x+$\frac{π}{5}$)-$\frac{π}{5}$]=cosx,
∴函数的最大值为1.
故选:A.

点评 本题考查三角函数的最值,整体利用和差角的三角函数是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.“$\sqrt{a}>\sqrt{b}$”是“ea>eb”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和${S_n}=2{n^2}+n$,则an=4n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在160和5中间插入4个数,使这6个数成等比数列,求这6个数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求适合下列条件的直线的方程:
(1)过点(-1,2)且平行于直线y=4;
(2)过点(-1,0)且垂直于直线2x+3y-1=0;
(3)过点(-3,2)且平行于过两点(2,1),(-3,4)的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\sqrt{1-{x}^{2}}$(-1≤x≤0),则f-1(0.5)=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若a=3,b=$\sqrt{3}$,A=$\frac{π}{6}$,则c=$\frac{3+\sqrt{33}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),经过点(1,$\frac{\sqrt{2}}{2}$),且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆方程;
(2)直线MN方程为y=kx+m,分别交椭圆于M,N两点
①M,N与椭圆左顶点的两条连线斜率乘积为-$\frac{1}{2}$,求证直线MN过定点,并求出定点坐标.
②△MON的重心G在以原点为圆心,$\frac{2}{3}$为半径的圆上,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=($\frac{3}{5}$)${\;}^{\frac{2}{5}}$,b=($\frac{2}{5}$)${\;}^{\frac{3}{5}}$,c=($\frac{2}{5}$)${\;}^{\frac{2}{5}}$,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<c<a

查看答案和解析>>

同步练习册答案